
Swift Cookbook
i

Swift Cookbook

Swift Cookbook
ii

Contents

1 Overview 1

2 Swift Basics 1

2.1 Installation . 1

2.1.1 Prerequisites . 1

2.2 Setting up to run Swift . 1

2.2.1 Environment Setup . 1

2.2.2 Setting transformation catalog . 2

2.2.3 Setting swift configuration . 2

2.2.4 Setting sites.xml . 3

2.3 First SwiftScript . 3

2.4 second SwiftScript . 3

2.5 Swift Commandline Options . 4

2.6 What if Swift hangs . 4

2.7 Resuming a stopped or crashed Swift Run . 4

2.8 Passing an array to swift? . 5

2.8.1 Mappers . 6

3 Coasters 7

3.1 For Advanced Users . 8

3.2 Coaster providers: local, ssh, pbs . 8

4 Swift on Diverse Infrastructures 9

4.1 Beagle . 9

4.2 PADS . 9

4.3 OSG . 10

4.4 Bionimbus . 10

5 Debugging Swift 12

6 Log Processing 12

6.1 Make a basic load plot from Coasters Cpu log lines . 12

6.1.1 Make a basic job completion plot from Coasters Cpu log lines . 13

6.1.2 Make a basic Block allocation plot from Coasters Block log lines . 13

6.2 Problem Reporting . 13

Swift Cookbook
1 / 13

1 Overview

This cookbook covers various recipes involving setting up and running Swift under diverse configurations based on the applica-
tion requirements and the underlying infrastructures. The Swift system comprises of SwiftScript language and the Swift runtime
system. For introductory material, consult the Swift tutorial found here.

Warning
Please be warned that the cookbook is under construction and most recipes are not tested rigorously. You are advised
to use them at your own risk.

2 Swift Basics

2.1 Installation

This section takes you through the installation of the Swift system on your computer. We will start with the prerequisites as
explained in the subsequent section.

2.1.1 Prerequisites

Check your Java Swift is a Java application. Make sure you are running Java version 5 or higher. You can make sure you have
Java in your $PATH (or $HOME/.soft file depending upon your environment)

Following are the possible ways to detect and run Java:

$ grep java $HOME/.soft
#+java-sun # Gives you Java 5
+java-1.6.0_03-sun-r1
$ which java
/soft/java-1.6.0_11-sun-r1/bin/java
$ java -version
java version "1.6.0_11"
Java(TM) SE Runtime Environment (build 1.6.0_11-b03)
Java HotSpot(TM) 64-Bit Server VM (build 11.0-b16, mixed mode)

2.2 Setting up to run Swift

This is simple. We will be using a pre-compiled version of Swift that can be downloaded from here. Download and untar the
latest precompiled version as follows:

$ tar xf swift-0.92.1.tar.gz

2.2.1 Environment Setup

The examples were tested with Java version 1.6. Make sure you do not already have Swift in your PATH. If you do, remove it,
or remove any +swift or @swift lines from your $HOME/.soft or $HOME/.bash_profile file. Then do:

PATH=$PATH:/path/to/swift/bin

Note that the environment will be different when using Swift from prebuilt distribution (as above) and trunk. The PATH setup
when using swift from trunk would be as follows:

http://www.ci.uchicago.edu/swift/guides/tutorial.php
http://www.ci.uchicago.edu/swift/downloads/index.php

Swift Cookbook
2 / 13

PATH=$PATH:/path/to/swift/dist/swift-svn/bin

Warning
Do NOT set SWIFT_HOME or CLASSPATH in your environment unless you fully understand how these will affect Swift’s
execution.

To execute your Swift script on a login host (or "localhost") use the following command:

swift -tc.file tc somescript.swift

2.2.2 Setting transformation catalog

The transformation catalog lists where application executables are located on remote sites.

By default, the site catalog is stored in etc/tc.data. This path can be overridden with the tc.file configuration property, either in
the Swift configuration file or on the command line.

The format is one line per executable per site, with fields separated by tabs or spaces.

Some example entries:

localhost echo /bin/echo INSTALLED INTEL32::LINUX null
TGUC touch /usr/bin/touch INSTALLED INTEL32::LINUX GLOBUS::maxwalltime ←↩

="00:00:10"

The fields are: site, transformation-name, executable-path, installation-status, platform, and profile entries.

The site field should correspond to a site name listed in the sites catalog.

The transformation-name should correspond to the transformation name used in a SwiftScript app procedure.

The executable-path should specify where the particular executable is located on that site.

The installation-status and platform fields are not used. Set them to INSTALLED and INTEL32::LINUX respectively.

The profiles field should be set to null if no profile entries are to be specified, or should contain the profile entries separated by
semicolons.

2.2.3 Setting swift configuration

Many configuration properties could be set using the Swift configuration file. We will not cover them all in this section. see here
for details. In this section we will cover a simple configuration file with the most basic properties.

A comment
wrapperlog.always.transfer=true
sitedir.keep=true
execution.retries=1
lazy.errors=true
status.mode=provider
use.provider.staging=true
provider.staging.pin.swiftfiles=false
clustering.enabled=false
clustering.queue.delay=10
clustering.min.time=86400
foreach.max.threads=100
provenance.log=true

http://www.ci.uchicago.edu/swift/guides/userguide.php#engineconfiguration

Swift Cookbook
3 / 13

2.2.4 Setting sites.xml

sites.xml specifies details of the sites that Swift can run on. Following is an example of a simple sites.xml file entry for running
Swift on local environment:

<pool handle="localhost">
<filesystem provider="local" />
<execution provider="local" />
<workdirectory >/var/tmp</workdirectory>
<profile namespace="karajan" key="jobThrottle">.07</profile>
<profile namespace="karajan"
key="initialScore">100000</profile>
</pool>

2.3 First SwiftScript

Your first SwiftScript Hello Swift-World!

A good sanity check that Swift is set up and running OK locally is this:

$ which swift

/home/wilde/swift/src/stable/cog/modules/swift/dist/swift-svn/bin/swift

$ echo ’trace("Hello, Swift world!");’ >hello.swift

$ swift hello.swift

Swift svn swift-r3202 cog-r2682

RunID: 20100115-1240-6xhzxuz3

Progress:

SwiftScript trace: Hello, Swift world!

Final status:

$

A good first tutorial in using Swift is at: http://www.ci.uchicago.edu/swift/guides/tutorial.php. Follow the steps in that tutorial to
learn how to run a few simple scripts on the login host.

2.4 second SwiftScript

Following is a more involved Swift script.

type file;

app (file o) cat (file i)
{

cat @i stdout=@o;
}

file out[]<simple_mapper; location="outdir", prefix="f.",suffix=".out">;

foreach j in [1:@toint(@arg("n","1"))] {

file data<"data.txt">;

http://www.ci.uchicago.edu/swift/guides/tutorial.php

Swift Cookbook
4 / 13

out[j] = cat(data);
}

2.5 Swift Commandline Options

A description of Swift Commandline Options

Also includes a description of Swift inputs and outputs.

2.6 What if Swift hangs

Owing to its highly multithreaded architecture it is often the case that the underlying java virtual machine gets into deadlock
situations or Swift hangs because of other complications in its threaded operations. Under such situations, Swift hang-checker
chips in and resolves the situation.

1. how to use the information to identify and correct the deadlock.

2. How close to the Swift source code can we make the hang-checker messages, so that the user can relate it to Swift functions,
expressions, and ideally source code lines?

3. The current Hang Checker output is actually very nice and useful already:

Registered futures:
Rupture[] rups Closed, 1 elements, 0 listeners
Variation vars - Closed, no listeners
SgtDim sub - Open, 1 listeners
string site Closed, no listeners
Variation[] vars Closed, 72 elements, 0 listeners

2.7 Resuming a stopped or crashed Swift Run

I had a .rlog file from a Swift run that ran out of time. I kicked it off using the -resume flag described in section 16.2 of the Swift
User Guide and it picked up where it left off. Then I killed it because I wanted to make changes to my sites file.

. . .
Progress: Selecting site:1150 Stage in:55 Active:3 Checking status:1
Stage out:37 Finished in previous run:2462 Finished successfully:96
Progress: Selecting site:1150 Stage in:55 Active:2 Checking status:1
Stage out:38 Finished in previous run:2462 Finished successfully:96
Cleaning up...
Shutting down service at https://192.5.86.6:54813
Got channel MetaChannel: 1293358091 -> null
+ Done
Canceling job 9297.svc.pads.ci.uchicago.edu

No new rlog file was emitted but it did recognize the progress that had been made, the 96 tasks that finished sucessfully above
and resumed from 2558 tasks finished.

[nbest@login2 files]$ pwd
/home/nbest/bigdata/files
[nbest@login2 files]$
~wilde/swift/src/stable/cog/modules/swift/dist/swift-svn/bin/swift \
> -tc.file tc -sites.file pbs.xml ~/scripts/mcd12q1.swift -resume
> mcd12q1-20100310-1326-ptxe1x1d.0.rlog
Swift svn swift-r3255 (swift modified locally) cog-r2723 (cog modified
locally)

Swift Cookbook
5 / 13

RunID: 20100311-1027-148caf0a
Progress:
Progress: uninitialized:4
Progress: Selecting site:671 Initializing site shared directory:1 Finished
in previous run:1864
Progress: uninitialized:1 Selecting site:576 Stage in:96 Finished in
previous run:1864
Progress: Selecting site:1150 Stage in:94 Submitting:2 Finished in
previous run:2558
Progress: Selecting site:1150 Stage in:94 Submitted:2 Finished in previous
run:2558
Progress: Selecting site:1150 Stage in:93 Submitting:1 Submitted:2
Finished in previous run:2558
Progress: Selecting site:1150 Stage in:90 Submitting:1 Submitted:5
Finished in previous run:2558
Progress: Selecting site:1150 Stage in:90 Submitted:5 Active:1 Finished
in previous run:2558

From Neil: A comment about that section of the user guide: It says "In order to restart from a restart log file, the -resume logfile
argument can be used after the SwiftScript? program file name." and then puts the -resume logfile argument before the script file
name. I’m sure the order doesn’t matter but the contradiction is confusing.

Notes to add (from Mike):

• explain what aspects of a Swift script make it restartable, and which aspects are notrestartable. Eg, if your mappers can return
different data at different times, what happens? What other non-determinsitc behavior would cause unpredictable, unexpected,
or undesired behavior on resumption?

• explain what changes you can make in the execution environment (eg increasing or reducing CPUs to run on or throttles, etc);
fixing tc.data entries, env vars, or apps, etc.

• note that resume will again retry failed app() calls. Explain if the retry count starts over or not.

• explain how to resume after multiple failures and resumes - i.e. if a .rlog is generated on each run, which one should you
resume from? Do you have a choice of resuming from any of them, and what happens if you go backwards to an older resume
file?

• whap happens when you kill (eg with C) a running swift script? Is the signal caught, and the resume file written out at that point? Or written out all along? (Note case in which script ws running for hours, then hit C,
but resume fie was short (54 bbytes) and swift shows no sign of doing a resume? (It silently ignored resume file instead of
acknowleging that it found one with not useful resume state in it???) Swift should clearly state that its resuming and what its
resume state is.

swift -resume ftdock-[id].0.rlog \[rest of the exact command line from initial run\]

2.8 Passing an array to swift?

Arrays can be passed to Swift in one of the following ways:

1. You can write the array to a file and read in in swift using readData (or readData2).

2. Direct the array into a file (possibly with a "here document" which expands the array) and then read the file in Swift with
readData() or process it with a Swift app() function?

3. You can use @strsplit on a comma separated command line arg and that works well for me.

Swift Cookbook
6 / 13

2.8.1 Mappers

SimpleMapper

$ cat swiftapply.swift

type RFile;
trace("hi 1");
app (RFile result) RunR (RFile rcall)
{
RunR @rcall @result;

}
trace("hi 2");
RFile rcalls[] ;
RFile results[] ;
trace("start");
foreach c, i in rcalls {
trace("c",i,@c);
trace("r",i,@filename(results[i]));
results[i] = RunR(c);

}

$ ls calldir resdir
calldir:
rcall.1.Rdata rcall.2.Rdata rcall.3.Rdata rcall.4.Rdata
resdir:
result.1.Rdata result.2.Rdata result.3.Rdata result.4.Rdata
$

Notes:

how the .’s match prefix and suffix dont span dirs intervening pattern must be digits these digits become the array indices ex-
plain how padding= arg works & helps (including padding=0) figure out and explain differences between simple_mapper and
filesys_mapper FIXME: Use the "filesys_mapper" and its "location=" parameter to map the input data from /home/wilde/big-
data/*

Abbreviations for SingleFileMapper Notes:

within <> you can only have a literal string as in <"filename">, not an expression. Someday we will fix this to make <> accept a
general expression. you can use @filenames() (note: plural) to pull off a list of filenames.

writeData()

example here

$ cat writedata.swift

type file;

file f <"filea">;
file nf <"filenames">;
nf = writeData(@f);

$ swift writedata.swift
Swift svn swift-r3264 (swift modified locally) cog-r2730 (cog modified
locally)
RunID: 20100319-2002-s9vpo0pe
Progress:
Final status:
$ cat filenames
filea$

Swift Cookbook
7 / 13

StructuredRegexpMapper IN PROGRESS This mapper can be used to base the mapped filenames of an output array on the
mapped filenames of an existing array. landuse outputfiles[] <structured_regexp_mapper; source=inputfiles, location="./output",match="(.)*tif",
transform="\\1histogram">;

Use the undocumented "structured_regexp_mapper" to name the output filenames based on the input filenames:

For example:

login2$ ls /home/wilde/bigdata/data/sample
h11v04.histogram h11v05.histogram h12v04.histogram h32v08.histogram
h11v04.tif h11v05.tif h12v04.tif h32v08.tif
login2$

login2$ cat regexp2.swift
type tif;
type mytype;

tif images[]<filesys_mapper;
location="/home/wilde/bigdata/data/sample", prefix="h", suffix=".tif">;

mytype of[] <structured_regexp_mapper; source=images, match="(h..v..)",
transform="output/myfile.\\1.mytype">;

foreach image, i in images {
trace(i,@filename(images));
trace(i,@filename(of[i]));

}
login2$

login1$ swift regexp2.swift
Swift svn swift-r3255 (swift modified locally) cog-r2723 (cog modified
locally)

RunID: 20100310-1105-4okarq08
Progress:
SwiftScript trace: 1, output/myfile.h11v04.mytype
SwiftScript trace: 2, home/wilde/bigdata/data/sample/h11v05.tif
SwiftScript trace: 3, home/wilde/bigdata/data/sample/h12v04.tif
SwiftScript trace: 0, output/myfile.h32v08.mytype
SwiftScript trace: 0, home/wilde/bigdata/data/sample/h32v08.tif
SwiftScript trace: 3, output/myfile.h12v04.mytype
SwiftScript trace: 1, home/wilde/bigdata/data/sample/h11v04.tif
SwiftScript trace: 2, output/myfile.h11v05.mytype
Final status:
login1$

3 Coasters

Coasters were introduced in Swift v0.6 as an experimental feature. In many applications, Swift performance can be greatly
enhanced by the use of CoG coasters. CoG coasters provide a low-overhead job submission and file transfer mechanism
suited for the execution of short jobs (on the order of a few seconds). A detailed information on coasters can be found at
http://www.ci.uchicago.edu/swift/guides/userguide.php#coasters.

Following is a coasters setup case-study for a PBS underlying provider where sites.xml coaster settings were:

<execution provider="coaster" jobmanager="local:pbs"/>
<profile namespace="globus" key="project">CI-CCR000013</profile>

<!-- Note that the following is going to be defunct in the new version (0.93+) and replaced ←↩
by

http://www.ci.uchicago.edu/swift/guides/userguide.php#coasters

Swift Cookbook
8 / 13

"ProviderAttributes" key and may not work in the future Swift versions-->

<!--<profile namespace="globus" key="ppn">24:cray:pack</profile>-->

<profile namespace="globus" key="providerAttributes">
pbs.aprun
pbs.mpp=true
</profile>

<profile namespace="globus" key="workersPerNode">24</profile>
<profile namespace="globus" key="maxTime">100000</profile>

<profile namespace="globus" key="lowOverallocation">100</profile>
<profile namespace="globus" key="highOverallocation">100</profile>

<profile namespace="globus" key="slots">20</profile>
<profile namespace="globus" key="nodeGranularity">5</profile>
<profile namespace="globus" key="maxNodes">5</profile>
<profile namespace="karajan" key="jobThrottle">20.00</profile>
<profile namespace="karajan" key="initialScore">10000</profile>

The following table briefly describes the elements on the coasters setup:

profile key brief description
slots How many maximum LRM jobs/worker blocks are allowed

workersPerNode How many coaster workers to run per execution node
nodeGranularity Each worker block uses a number of nodes that is a multiple

of this number
lowOverallocation How many times larger than the job walltime should a block’s

walltime be if all jobs are 1s long
highOverallocation How many times larger than the job walltime should a block’s

walltime be if all jobs are infinitely long
workersPerNode How many coaster workers to run per execution node reserve

How many seconds to reserve in a block’s walltime for
starting/shutdown operations

maxnodes The maximum number of nodes allowed in a block
maxtime The maximum number of walltime allowed for a block

coaster service
jobThrottle the number of concurrent jobs allowed on a site

3.1 For Advanced Users

One of the main reason that one would initially deviate from coaster defaults into more complex pool entries is to force jobs to
fit into some site-imposed constraint. For instance a typical submission to the experimental queue requires a user to request upto
3 nodes for under 1 hour. This setup could be achieved with a careful tuning of coaters parameters.

3.2 Coaster providers: local, ssh, pbs

Settings and examples for different coaster providers mechanisms.

Swift Cookbook
9 / 13

4 Swift on Diverse Infrastructures

4.1 Beagle

Swift is available on Beagle as a software module. In this recipe, we will walk you through a very simple example running Swift
on Beagle. The prerequisites required for running this example on Beagle is an access to Beagle and a project allocation. The
example is a simplest form of a real application that involves reading from a disc file and writing onto another disc file. It runs
the /bin/cat Unix command to read an input file called data.txt and write it to an output file in a folder outdir, called
f.nnn.out.

The steps are as follows:

step 1. Load the Swift module on Beagle commandline as follows: $ module load swift

step 2. Create and change to a directory where your Swift related work (source, inputs, outputs) will stay. (say, $ mkdir
swift-lab, followed by, $ cd swift-lab)

step 3. copy the folder at /home/ketan/labs/catsn to the above directory. ($cp -r /home/ketan/catsn . fol-
lowed by $ cd catsn).

step 4. In the sites file: sites.xml make the following two changes:

1. change the path of the <workdirectory> element to your preferred location (this location is required to be on /lustre,
say to /lustre/beagle/<yourname>/swift-lab/swift.workdir), and

2. Change the project name to your project (for instance, CI-CCR000013) . The workdirectory will contain execution data
related to each run, e.g. wrapper scripts, system information, inputs and outputs.

step 5. Run the example using following commandline (also found in run.sh):

$ swift -config cf -tc.file tc -sites.file sites.xml catsn.swift -n=1

You can further change the value of -n to any arbitrary number to run that many number of concurrent cat

step 6. Check the output in the generated outdir directory (ls outdir)

Note: Running from sandbox node or requesting 1 hour walltime for upto 3 nodes will get fast prioritized execution. Good for
small tests Swift supports a coasters based computing environment for Beagle. A detailed version of Swift documentation is
maintained here.

4.2 PADS

Swift on PADS To execute your Swift script on the PADS cluster use this command:

swift -tc.file tc -sites.file pbs.xml modis.swift

where the contents of a simple pbs.xml sites file could be:

http://www.ci.uchicago.edu/swift/docs/index.php

Swift Cookbook
10 / 13

<config>
<pool handle="pbs">
<execution provider="pbs" url="none"/>
<profile namespace="globus" key="queue">fast</profile>
<profile namespace="globus" key="maxwalltime">00:05:00</profile>
<profile namespace="karajan" key="initialScore">10000</profile>
<profile namespace="karajan" key="jobThrottle">.10</profile>
<filesystem provider="local"/>
<workdirectory >/home/you/swiftwork</workdirectory>

</pool>
</config>

4.3 OSG

This section describes how to get Swift running on the OSG Grid. We will use a manual coaster setup to get Swift running on
OSG.

Coaster setup on OSG The following figure shows an abstract scheme for the manual coasters setup on OSG.

In the following steps, we will go through the process of manually setting

4.4 Bionimbus

This section explains a step by step procedure on getting Swift running on the Bionimbus cloud. We will use the manual coasters
configuration on the Bionimbus cloud.

Swift Cookbook
11 / 13

step1. Connect to the gateway (ssh gatewayx.lac.uic.edu)

step2. Start a virtual machine (euca-run-instances -n 1 -t m1.small emi-17EB1170)

step3. Start the coaster-service on gateway coaster-service -port 1984 -localport 35753 -nosec

step4. Start the Swift-script from the gateway using normal Swift commandline

swift -config cf -tc.file tc -sites.file sites.xml yourscript.swift -aparam=999

cf

wrapperlog.always.transfer=true
sitedir.keep=true
execution.retries=1
lazy.errors=true
status.mode=provider
use.provider.staging=true
provider.staging.pin.swiftfiles=false
foreach.max.threads=100
provenance.log=true

tc

localhost modftdock /home/ketan/swift-labs/bionimbus-coaster-modftdock/app/modftdock.sh ←↩
null null GLOBUS::maxwalltime="1:00:00"

(See below for a sample sites.xml for this run)

step5. Connect back to gateway from virtual machines using reverse ssh tunneling as follows:

From the gateway prompt ssh -R *:5000:localhost:5000 root@10.101.8.50 sleep 999

WHERE: *=network interface, should remain the same on all cases

localhost=the gateway host, should remain the same

5000(LEFT OF localhost)=the port number on localhost to listen to **THIS WILL vary depending upon which port you want to
listen to

5000(RIGHT OF localhost)=the port on target host that you want to forward

root@10.101.8.50=the ip of the Virtual Machine on Bionimbus cloud, this will vary based on what ip you get for your Virtual
Machine instance

#On anywhere as long as provide the correct callback uri: here the "http://140.221.9.110:42195" is the callback uri of previous
ones

step6. Start the worker from the virtual machine worker.pl http://localhost:42195 tmp /tmp # where 42195
is the port where the coaster service is listening to the workers

sites.xml for the above run

<config>
<pool handle="localhost">
<execution provider="coaster-persistent" url="http://localhost:1984" jobmanager=" ←↩

local:local"/>
<profile namespace="globus" key="workerManager">passive</profile>

<profile namespace="globus" key="workersPerNode">4</profile>
<profile namespace="globus" key="maxTime">10000</profile>
<profile namespace="globus" key="lowOverAllocation">100</profile>
<profile namespace="globus" key="highOverAllocation">100</profile>
<profile namespace="globus" key="slots">100</profile>
<profile namespace="globus" key="nodeGranularity">1</profile>
<profile namespace="globus" key="maxNodes">10</profile>
<profile namespace="karajan" key="jobThrottle">25.00</profile>
<profile namespace="karajan" key="initialScore">10000</profile>

mailto:root@10.101.8.50
mailto:root@10.101.8.50
http://localhost:42195

Swift Cookbook
12 / 13

<profile namespace="swift" key="stagingMethod">proxy</profile>
<filesystem provider="local"/>
<workdirectory>/home/ketan/swift-labs/bionimbus-coaster-modftdock/swift.workdir</ ←↩

workdirectory>
</pool>

</config>

5 Debugging Swift

Swift errors are logged in several places:

1. All text from standard output and standard error produced by running the swift command

2. The .log file from this run. It will be named swiftscript.uniqueID.log where "swiftscript" is the name of your *.swift script
source file, and uniqueID is a long unique id which starts with the date and time you ran the swift command.

3. $HOME/.globus/coasters directory on remote machines on which you are running coasters

4. $HOME/.globus/scripts directory on the host on which you run the Swift command, when swift is submitting to a local
scheduler (Condor, PBS, SGE, Cobalt)

5. $HOME/.globus/??? on remote systems that you access via Globus

6 Log Processing

To properly generate log plots, you must enable VDL/Karajan logging. Make sure log4.properties contains:

log4j.logger.swift=DEBUG
log4j.logger.org.globus.cog.abstraction.coaster.service.job.manager.Cpu=DEBUG

6.1 Make a basic load plot from Coasters Cpu log lines

Generate the log (may set log4j.logger.swift=INFO for this one) (assuming the log is titled swift-run.log)

Convert the log times to Unix time

./iso-to-secs < swift-run.log > swift-run.time

Make the start time file (this contains the earliest timestamp)

make LOG=swift-run.log start-time.tmp

or

extract-start-time swift-run.log > start-time.tmp

Normalize the transition times

./normalise-event-start-time < swift-run.time > swift-run.norm

Build up a load data file:

./cpu-job-load.pl < swift-run.norm > load.data

Plot with the JFreeChart-based plotter in usertools/plotter:

lines.zsh load.cfg load.eps load.data

Swift Cookbook
13 / 13

6.1.1 Make a basic job completion plot from Coasters Cpu log lines

Same as above, but, build up a completed data file:

./cpu-job-completed.pl < swift-run.norm > completed.data

Plot with the JFreeChart-based plotter in usertools/plotter:

lines.zsh completed.cfg completed.eps completed.data

6.1.2 Make a basic Block allocation plot from Coasters Block log lines

Same as above, but:

Build up a block allocation data file:

./block-level.pl < swift-run.norm > blocks.data

Plot with the JFreeChart-based plotter in usertools/plotter:

lines.zsh blocks.{cfg,eps,data}

6.2 Problem Reporting

When reporting problems to swift-user@ci.uchicago.edu, please attach the following files and information:

1. tc.data and sites.xml (or whatever you named these files)

2. your .swift source file and any .swift files it imports

3. any external mapper scripts called by your .swift script

4. all text from standard output and standard error produced by running the swift command

5. The .log file from this run. It will be named swiftscript.uniqueID.log

6. where "swiftscript" is the name of your *.swift script source file, and uniqueID is a long unique id which starts with the
date and time you ran the swift command.

7. The swift command line you invoked

8. Any swift.properties entries you over-rode ($HOME/.swift/swift.properties, -config.file argument properties file, any changes
to etc/swift.proerties from your swift distribution)

9. Which swift distribution you are running (release; svn revisions; other local changes you mave have made or included)

mailto:swift-user@ci.uchicago.edu

	Overview
	Swift Basics
	Installation
	Prerequisites

	Setting up to run Swift
	Environment Setup
	Setting transformation catalog
	Setting swift configuration
	Setting sites.xml

	First SwiftScript
	second SwiftScript
	Swift Commandline Options
	What if Swift hangs
	Resuming a stopped or crashed Swift Run
	Passing an array to swift?
	Mappers

	Coasters
	For Advanced Users
	Coaster providers: local, ssh, pbs

	Swift on Diverse Infrastructures
	Beagle
	PADS
	OSG
	Bionimbus

	Debugging Swift
	Log Processing
	Make a basic load plot from Coasters Cpu log lines
	Make a basic job completion plot from Coasters Cpu log lines
	Make a basic Block allocation plot from Coasters Block log lines

	Problem Reporting

