
Swiftrun i

Swiftrun

Swiftrun ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Swiftrun iii

Contents

1 Introduction 1

2 Running older Swift releases 1

2.1 sites.xml . 1

2.2 tc.data . 1

2.3 cf . 1

3 Running Swift 0.95 2

3.1 Location of swift.properties . 2

3.2 Selecting a site . 3

3.3 Selecting multiple sites . 3

3.4 Run directories . 3

3.5 Using site templates . 3

3.6 Backward compatability . 3

4 The swift.properties file format 4

4.1 Site definitions . 4

4.2 Grouping site properties . 5

4.3 App definitions . 5

4.4 General Swift properties . 5

4.5 Using shell variables . 6

Swiftrun 1 / 6

1 Introduction

Swift 0.95 introduces many changes to the method for configuring and running Swift. The goal of these changes is to make
configuration easier for Swift users. This document will attempt to explain the reasons for these changes and document how
these new configuration mechanisms work.

2 Running older Swift releases

In Swift 0.94 and earlier versions, configuring Swift usually required setting up files called sites.xml, tc.data, and cf. These files
typically needed to be specified on the command line. The following command line was pretty typical in previous Swift releases:

$ swift -sites.file sites.xml -tc.file tc.data -config cf myscript.swift

2.1 sites.xml

The sites.xml file was an XML configuration file that defined site parameters. It was used to determine how Swift should interact
with the scheduler. Below is an example sites.xml for a campus cluster called midway

sites.xml

<config>
<pool handle="midway-sandyb">
<execution provider="coaster" jobmanager="local:slurm"/>
<profile namespace="globus" key="jobsPerNode">16</profile>
<profile namespace="globus" key="maxWalltime">_WALLTIME_</profile>
<profile namespace="globus" key="highOverAllocation">100</profile>
<profile namespace="globus" key="lowOverAllocation">100</profile>
<profile namespace="globus" key="queue">sandyb</profile>
<profile namespace="karajan" key="initialScore">10000</profile>
<filesystem provider="local"/>
<workdirectory>/scratch/midway/{env.USER}</workdirectory>

</pool>
</config>

2.2 tc.data

The tc.data was a basic catalog that defined the location of applications on a given site.

tc.data

localhost cat /bin/cat null null null

2.3 cf

The cf file (also called swift.properties) was a file that defined various swift configuration values, like retries and error handling.

cf

wrapperlog.always.transfer=true
sitedir.keep=true
file.gc.enabled=false
status.mode=provider

Swiftrun 2 / 6

3 Running Swift 0.95

Previous versions of Swift required users to create multiple files, each in stored in a different format. In an attempt to make things
easier, Swift 0.95 merges these different configuration files into a single, common configuration file called swift.properties.

The new swift.properties file is responsible for:

1. Defining sites

2. Defining applications

3. Defining various swift settings

Here is an example of a new swift.properties file.

Define sandyb site
site.sandyb.tasksPerWorker=16
site.sandyb.taskWalltime=00:05:00
site.sandyb.jobManager=slurm
site.sandyb.jobQueue=sandyb
site.sandyb.maxJobs=1
site.sandyb.workdir=/scratch/midway/$USER/work
site.sandyb.filesystem=local

Define sandyb apps
app.sandyb.echo=/bin/echo

Define swift properties
sitedir.keep=true
wrapperlog.always.transfer=true

Select which site to run on
site=sandyb

This single swift.properties file works identically to using the sites.xml, tc.data, and cf files listed in the previous section. The
details of this file will be explained more later. Let’s first look at an example of running Swift with this new file.

Using the swift.properties file above, the new Swift command a user would run is:

$ swift script.swift

That is all that is needed. Everything Swift needs to know is defined in swift.properties.

3.1 Location of swift.properties

Swift searches for swift.properties files in multiple locations:

1. The etc/swift.properties file included with the Swift distribution.

2. $SWIFT_SITE_CONF/swift.properties - used for defining site templates.

3. $HOME/.swift/swift.properties

4. swift.properties in your current directory.

5. Any property file you point to with the command line argument "-properties <file>"

Settings get read in this order. Definitions in the later files will override any previous definitions. For example, if you have
execution.retries=10 in $HOME/.swift/swift.properties, and execution.retries=0 in the swift.properties in your current directory,
execution.retries will be set to 0.

To verify what files are being read, and what values will be set, run:

$ swift -listconfig

Swiftrun 3 / 6

3.2 Selecting a site

There are two ways Swift knows where to run. The first is via swift.properties. The site command specified which site entries
should be used for a particular run.

site=sandyb

Sites can also be selected on the command line by using the -site option.

$ swift -site westmere script.swift

The -site command line argument will override any sites selected in swift.properties.

3.3 Selecting multiple sites

To use multiple sites, use a list of site names separated by commas. In swift.properties:

site=westmere,sandyb

The same format can be used on the command line:

$ swift -site westmere,sandyb script.swift

Note
You can also use "sites=" in swift.properties, and "-sites x,y,z" on the command line.

3.4 Run directories

When you run Swift, you will see a run directory get created. The run directory has the name of runNNN, where NNN starts at
000 and increments for every run.

The run directories can be useful for debugging. They contain: .Run directory contents

apps An apps generated from swift.properties
cf A configuration file generated from swift.properties
runNNN.log The log file generated during the Swift run
scriptname-runNNN.d Debug directory containing wrapper logs
scripts Directory that contains scheduler scripts used for that run
sites.xml A sites.xml generated from swift.properties
swift.out The standard out and standard error generated by Swift

3.5 Using site templates

This new configuration mechanism should make it easier to use site templates. To use this, set the environment variable
$SWIFT_SITE_CONF to a directory containing a swift.properties file. This swift.properties can contain multiple site defini-
tions for the various queues available on the cluster you are using.

Your local swift.properties then does not need to define the entire site. It may contain only differences you need to make that are
specific to your application, like walltime.

3.6 Backward compatability

Swift 0.95 should be backwards compatible with Swift 0.94. If you would like to use XML files and tc.data/app files in the
previous style, things should work as before. If you notice an instance where this is not true, please send an email to swift-

mailto:swift-support@ci.uchicago.edu
mailto:swift-support@ci.uchicago.edu
mailto:swift-support@ci.uchicago.edu

Swiftrun 4 / 6

support@ci.uchicago.edu.

4 The swift.properties file format

4.1 Site definitions

Site definitions in the swift.properties files begin with "site". The second word is the name of the site you are defining. In these
examples we will define a site called westmere. The third word is the property.

For example:

site.westmere.jobQueue=fast

Before the site properties are listed, it’s important to understand the terminology used.

A task, or app task is an instance of a program as defined in a Swift app() function.

A worker is the program that launches app tasks.

A job is related to schedulers. It is the mechanism by which workers are launched.

Below is the list of valid site properties with brief explanations of what they do, and an example swift.properties entry.

Table 1: swift.properties site properties

Property Description Example
filesystem Defines how files should be accessed site.westmere.filesystem=local
jobGranularity Specifies the granularity of a job, in

nodes
site.westmere.jobGranularity=2

jobManager Specifies how jobs will be launched.
The supported job managers are
"cobalt", "slurm", "condor", "pbs",
"lsf", "local", and "sge".

site.westmere.jobManager=slurm

jobProject Set the project name for the job
scheduler

site.westmere.project=myproject

jobQueue Set the name of the scheduler queue to
use.

site.westmere.jobQueue=westmere

jobWalltime The maximum number amount of
time allocated in a scheduler job, in
hh:mm:ss format.

site.westmere.jobWalltime=01:00:00

maxJobs Maximum number of scheduler jobs
to submit

site.westmere.maxJobs=20

maxNodesPerJob The maximum number of nodes to
request per scheduler job.

site.westmere.maxNodesPerJob=2

taskDir Tasks will be run from this directory.
In the absence of a taskDir definition,
Swift will run the task from workdir.

site.westmere.taskDir=/scratch/local/$USER/work

tasksPerWorker The number of tasks that each worker
can run simultaneously.

site.westmere.tasksPernode=12

taskThrottle The maximum number of active tasks
across all workers.

site.westmere.taskThrottle=100

taskWalltime The maximum amount of time a task
may run, in hh:mm:ss.

site.westmere.taskWalltime=01:00:00

site Name of site or sites to run on. This is
the same as running with swift -site
<sitename>

site=westmere

mailto:swift-support@ci.uchicago.edu
mailto:swift-support@ci.uchicago.edu
mailto:swift-support@ci.uchicago.edu

Swiftrun 5 / 6

Table 1: (continued)

Property Description Example
workdir The workdirectory element specifies

where on the site files can be stored.
This directory must be available on all
worker nodes that will be used for
execution. A shared cluster filesystem
is appropriate for this. Note that you
need to specify absolute pathname for
this field.

site.westmere.workdir=/scratch/midway/$USER/work

4.2 Grouping site properties

The example swift.properties in this document listed the following site related properties:

site.westmere.provider=local:slurm
site.westmere.jobsPerNode=12
site.westmere.maxWalltime=00:05:00
site.westmere.queue=westmere
site.westmere.initialScore=10000
site.westmere.filesystem=local
site.westmere.workdir=/scratch/midway/davidkelly999

However, it is also simplify this by grouping these properties together with curly brackets.

site.westmere {
provider=local:slurm
jobsPerNode=12
maxWalltime=00:05:00
queue=westmere
initialScore=10000
filesystem=local
workdir=/scratch/midway/$USER/work

}

4.3 App definitions

In 0.95, applications wildcards will be used by default. This means that $PATH will be searched and pathnames to application
do not have to be defined.

In the case where you have multiple sites defined, and you want control over where things run, you will need to define the location
of apps. In this scenario, you will can define apps in swift.properties with something like this:

app.westmere.cat=/bin/cat

When an app is defined in swift.properties for any site you are running on, wildcards will be disabled, and all apps you want to
use must be defined.

4.4 General Swift properties

Swift properties can be used in the new swift.properties file with no changes. Example:

sitedir.keep=true

For the list of available properties and their descriptions, please see the User Guide entry for Swift configuration properties.

http://www.ci.uchicago.edu/swift/guides/trunk/userguide/userguide.html#_swift_configuration_properties

Swiftrun 6 / 6

4.5 Using shell variables

Any value in swift.properties may contain environment variables. For example:

workdir=/scratch/midway/$USER/work

Environment variables are expanded locally on the machine where you are running Swift.

Swift will also define a variable called $RUNDIRECTORY that is the path to the run directory Swift creates. In a case where
you’d like your work directory to be in the runNNN directory, you may do something like this:

workdir=$RUNDIRECTORY

	Introduction
	Running older Swift releases
	sites.xml
	tc.data
	cf

	Running Swift 0.95
	Location of swift.properties
	Selecting a site
	Selecting multiple sites
	Run directories
	Using site templates
	Backward compatability

	The swift.properties file format
	Site definitions
	Grouping site properties
	App definitions
	General Swift properties
	Using shell variables

