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Abstract Many-task computing is a well-established paradigm for implementing
loosely coupled applications (tasks) on large-scale computing systems. However,
few of the model’s existing implementations provide efficient, low-latency support
for executing tasks that are tightly coupled multiprocessing applications. Thus, a
vast array of parallel applications cannot readily be used effectively within many-
task workloads. In this work, we present JETS, a middleware component that
provides high performance support for many-parallel-task computing (MPTC).
JETS is based on a highly concurrent approach to parallel task dispatch and
on new capabilities now available in the MPICH2 MPI implementation and the
ZeptoOS Linux operating system. JETS represents an advance over the few known
examples of multilevel many-parallel-task scheduling systems: it more efficiently
schedules and launches many short-duration parallel application invocations; it
overcomes the challenges of coupling the user processes of each multiprocessing
application invocation via the messaging fabric; and it concurrently manages many
application executions in various stages. We report here on the JETS architecture
and its performance on both synthetic benchmarks and an MPTC application in
molecular dynamics.

1 Introduction

What matters is that all of the components work together. [25]

The high-performance computing (HPC) systems of today almost exclusively run
Unix and Linux operating systems, yet lack a fundamental strength of the Unix
philosophy: program composability and modularity. HPC systems are controlled by
schedulers that often greatly restrict the feature set available to the shell program-
mer. Schedulers and resource management systems often enforce multiple policies
that limit software flexibility. As a result, new compositions of existing software
features in scientific software are often developed by editing C and Fortran source
code, at great effort.
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Fig. 1: Model for many-parallel-task computing.

Scheduled systems (PBS, Cobalt) run user programs inside allocations, which
grant fixed computational resources to a user for a fixed amount of time (although
programs may exit before the allocation expires). The user has little control over
exactly when a program will start because the time is determined by other users
in the queue. Scheduling multiple programs to work together is a complex co-
scheduling problem that has not caught on with users. Allocation sizes may be
restricted by site policy to minimum processor counts or times. Within an alloca-
tion, it is typically difficult or impossible to launch multiple processes in succession;
if this capability is available, it is typically possible only with trivial control flow
and simple resource usage. Among allocations, some schedulers offer rudimen-
tary workflow functionality. Since separately allocated jobs are queued separately,
however, a succeeding allocation is unlikely to start immediately when a preced-
ing allocation exits. Allocations may take on the order of minutes to boot, making
workflows constructed this way inefficient. Communication among allocations may
be restricted for security reasons.

Solutions for interacting productively with these systems is related to problems
addressed in grid computing. Among allocations, advanced workflow specification
languages may be used, and scheduler abstraction interfaces may aid in workflow
deployment. Additionally, within allocations, pilot job mechanisms may help in
the reuse of allocation resources.

The model of interest to this work combines several of these grid-based solu-
tions to HPC-specific problems. A model of our problem is shown in Figure 1.
The user starts by creating one large allocation on the computing system 1©.
Next, the user provides or generates a (possibly dynamic) set of job definitions 2©,
which contain processor count and run-time requirements, and instantiates the
user scheduler. These are launched efficiently inside the allocation 3©.
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Achieving this functionality requires multiple technical features. First, it re-
quires a full-featured operating system on the compute nodes capable of com-
municating with the user scheduler and managing subordinate user properties.
Second, it requires the development of a fast user scheduler. Third, it requires
the ability to remotely invoke MPI programs without relying on previous pro-
cess managers, the key contribution of this work. Fourth, it requires solutions to
many related problems, such as workflow management, fault tolerance, and other
systems challenges.

1.1 Many-Task Computing

Many-task computing (MTC) [36] has emerged as a powerful concept for the rapid
development and execution of scalable scientific applications on large clusters and
leadership-class supercomputers. The MTC model consists of many, usually se-
quential, individual applications (called tasks) that are executed on individually
addressable system components, such as processor cores, without intertask com-
munication. These tasks communicate only through the standard filesystem in-
terfaces, although optimizations are possible [54]. MTC allows use of large-scale
parallel systems with little or no explicit parallel programming.

Application developers may wish to build a composite application comprising
an ensemble of parallel executions, linked together by a workflow or parameter
sweep. The results of such a run may be integrated by statistical or optimization-
based methods, such as a Monte Carlo algorithm, a parameter search, or other
methods related to uncertainty quantification. The model thus is conducive to the
use of scripting, workflow engines, and other familiar programming models that
allow application developers to efficiently utilize a variety of systems, from single
systems where tasks are executed in sequence, to parallel and distributed systems,
where the number of tasks that can be executed concurrently is limited by the
scale of the system, the efficiency of scheduling and running the tasks, and the
implicit parallelism of the application itself.

The MTC model has successfully been applied to problems in a variety of scien-
tific domains, including computational biochemical investigations, such as protein
structure prediction [10, 21, 50], molecular dynamics simulations of protein-ligand
docking [37] and protein-RNA docking, and searching mass-spectrometry data for
posttranslational protein modifications [26,50]; modeling of the interactions of cli-
mate, energy, and economics [43,50]; postprocessing and analysis of climate model
results; explorations of the language functions of the human brain [17,24,42]; cre-
ation of general statistical frameworks for structural equation modeling [4]; and
image processing for research in image-guided planning for neurosurgery [12] and
astronomy [50].

Since MTC makes no provisions for intertask communication during a task’s
execution, it limits the flexibility available to developers who may wish to strike
a balance between the MTC and HPC models. It does not make the benefits of
the high-performance interconnect available to the application. In this paper, we
demonstrate the ability to make the interconnect available by allowing user tasks to
use multiple processors and internally communicate through MPI. Thus, programs
built on MPI and related technologies may be brought into the MTC model. In a



4 Justin M. Wozniak, Michael Wilde, and Daniel S. Katz

many-core setting, this also enables the use of shared-memory or other hierarchical
or node-local communication mechanisms, although that is not developed here.

1.2 Many-Parallel-task computing

MTC, as a research field, addresses the problems that emerge from launching many
individual sequential processes on a large-scale system. Analogously, an application
that faces challenges resulting from a large number of parallel executions is an
MPTC problem. Systems that enable MPTC provide a powerful tool for scientific
application developers.

In addition to the the usability benefits of MTC, MPTC also provides bene-
fits from a systems perspective, in that it allows many-task applications to make
good use of HPC interconnects. First, the native schedulers and application-launch
mechanisms of today’s supercomputers do not support a sufficiently fast task
scheduling, startup, and shutdown cycle to allow implementations of the many-
task computing model to work efficiently, but the development of a specialized,
single-user scheduler can allow many task applications to use a high fraction of the
system compute resources. Second, MPTC makes the interconnect fabric resources
available to the tasks in an MTC-like model. These constitute a significant portion
of the expense of the largest of the TOP500 systems [47].

Additionally, MPTC allows tasks to use powerful software implementations
such as MPI-IO, which aggregate and optimize accesses to distributed and par-
allel filesystems. The use of these algorithms and implementations can greatly
increase data access rates to available cores, making better use of the storage
system than is the case for today’s MTC applications, which by default use un-
coordinated filesystem accesses that are difficult to manage. For example, given
N MTC processes, the filesystem would be accessed by N clients; however, for
16-process MPTC tasks using MPI-IO, the number of clients would be N/16.

In this work, we present JETS, which is designed from the ground up to
make good use of supercomputer resources to support large batches of parallel
tasks, in which each task execution consists of tightly coupled processes that use
MPI for communication. The development of JETS involved modifications to the
MPICH2 [31] package that are now publicly available. JETS runs on commodity
clusters, optionally through SSH tunnels [33], and on the Blue Gene/P (BG/P)
through the use of ZeptoOS functionality. Thus it is applicable to clusters, grids,
clouds, and high-performance systems. JETS is a highly usable system in the MTC
tradition and is concerned primarily with dispatching application invocation com-
mands to available resources. Additionally, JETS has been integrated with the
Swift workflow language [55] and Coasters [18] scheduler.

This paper describes the MPTC problem in more detail and reports four main
technical contributions:

1. We have designed, implemented, and demonstrated new MPICH2 features that
enable individual MPI processes to be managed by an external scheduler.

2. We have designed, implemented, and demonstrated an associated set of exter-
nal routines used to control the MPICH2 process manager (the Hydra compo-
nent), constituting the core JETS functionality.

3. We have designed, implemented, and demonstrated a stand-alone tool (jets)
that provides maximum performance for scripts that execute many small MPI
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task sets. This allows users to run simple batches of MPI tasks using a simple
task list produced by hand or by running a generator script, assuming all job
specifications may be determined in advance.

4. We have integrated the core JETS functionality with the Swift parallel scripting
language through the Swift execution layer. This enables a user to compose
the application together as a loosely coupled collection of multiprocessor jobs.
Such an application is driven by a high-level, dynamic script that is capable
of making branch decisions at run time. Additionally, it may be used on any
of the resources supported by Swift and Coasters, including clusters, grids,
clouds, and HPC systems.

1.3 Applications, including Molecular Dynamics

Many scientific applications have the potential to benefit from MPTC techniques.
The performance characteristics of the component jobs in an application workflow
determine the applicability of MPTC techniques.

For a typical large-scale HPC system, such an application should necessarily
be able to utilize O(10, 000) processors or more concurrently, across multiple run-
ning jobs. Individual jobs should run for seconds or minutes and require tens to
hundreds of processors. Jobs that exceed these parameters in run time or proces-
sor count are candidates for using the traditional systems scheduler, jobs that run
for subsecond run times on single processors are candidates for systems such as
ADLB [30] or Scioto [11] (libraries that require code modification). Since MPTC
logically encompasses MTC, it includes application components from that space
as well.

In this work, we focus on replica exchange molecular dynamics (REM) via
NAMD as an example application. The REM algorithm is described in more detail
below. NAMD jobs for REM fall within the MPTC range. Existing techniques for
REM in NAMD focus on modifying the NAMD codebase and recompiling. NAMD
contains about 30,000 lines of Charm++ and C++ code in addition to Tcl features.
Recompiling NAMD for the Blue Gene/P with optimizations takes multiple hours.
Thus, a lightweight technique for recomposing application logic in workflows from
component calls to NAMD jobs is highly desirable.

1.4 Contents

The remainder of this paper is organized as follows. Section 2 describes work
related to the topic of MTC. Section 3 contains a motivating case study in MPTC,
and Sections 4 and 5 describe the components used to build JETS and its system
architecture. In Section 6 we measure system performance and in Section 7 describe
planned future work. We conclude in Section 8 with comments on possible new
applications built by using the JETS model.

2 Background and Related Work

Many-task computing represents the intersection of sequential batch-oriented com-
puting with extreme-scale computational resources. MTC is attractive to develop-
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ers because of its broad portability and support from many toolkits. We emphasize
that our target systems are single-site HPC resources; however, much of the foun-
dational work in the area is based in grid and distributed computing.

Grid computing [15] provided an abundance of computational resources to sci-
entific groups, necessitating the creation of a variety of toolkits to automate the
use of these resources for common application patterns such as parameter sweeps
and workflows. Parameter sweeps, supported by systems such as Nimrod [1] and
APST [3], enable the user to specify a high-level definition of possible program
inputs to be sampled. The system then generates the resulting job specifications
and submits them to resources. In comparison, the JETS mechanism rapidly as-
sembles independent available compute nodes into parallel jobs, without requiring
support for such aggregation in the underlying resource manager. Further, JETS
has been integrated with the Swift system for the management of jobs and data,
and is not linked to a particular higher-level pattern.

An initial pilot job mechanism was the Condor Glide-In [16] mechanism that
integrated with the full-featured Condor [45] scheduler. The Condor Glide-In
mechanism essentially places a full Condor installation on the target site, includ-
ing remote system calls and checkpoint/restart functionality. Workflows may be
launched inside an Condor allocation with GlideinWMS [40]. Panda Pilot fac-
tory [7] is a recent development that provides a pilot job wrapper mechanism to
manage the distribution of worker agents as well as the initial data placement.
Neither Condor Glide-In nor Panda is capable, however, of aggregating multi-
ple independent cluster compute nodes to assemble the resources needed for the
execution of parallel MPI jobs.

The SAGA BigJob [29] system enables the use of various underlying job submis-
sion mechanisms including Condor, Globus [14], and Amazon EC2 cloud allocation.
SAGA places workers on the resources and coordinates with the BigJob system to
place multiprocessor jobs on distributed resources. In comparison, SAGA is con-
cerned primarily with questions regarding the distributed infrastructure and does
not address the performance regime of many short-duration parallel tasks that
JETS has achieved. SAGA has been used to perform replica-exchange simulations
(see Section 3) with NAMD [46] in an investigation that focused on coupling the
replica exchange trajectories. Related work in a widely distributed context allowed
MPI jobs to run across resource managers by using queue time estimates provided
by a queuing time predictor [6].

Similarly, the Integrated Plasma Simulator (IPS [13]) is a dataflow-driven
workflow specification system that wraps parallel MPI simulation applications
into component-oriented Python objects. While originally designed for the specific
needs of the plasma fusion simulation community, IPS is in fact general purpose.
Like JETS, it requests a large allocation of compute nodes as a single job from the
system’s underlying resource manager (such as PBS), and it manages the launch-
ing of individual application subtasks within this pool. Being more recent, JETS
improves on two of IPS’s limitations. First, to maintain its understanding of the
number of free nodes in its compute-node pool, IPS must accurately predict how
the underlying resource manager will assign nodes to IPS task creation requests.
In complex systems such as the Cray with many NUMA and CPU-affinity issues
being handled by the resource manager, this task can be tricky and requires user
error-prone logic. JETS overcomes this problem by doing its own node manage-
ment with a JETS worker agent on each compute node. Second, IPS depends on
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Fig. 2: Workflow perspective of replica exchange method.

the native systems underlying job placement and MPI launching service, such as
mpiexec [31] on simple clusters and ALPS aprun on Cray systems [23]. This does
not provide any straightforward way to run on systems with more complex job
launching mechanisms, such as the Blue Gene/P. Again, JETS overcomes this
limitation with its worker agents, which are started with simple scripts running
under the native resource manager. While future Blue Gene systems may provide
application launch capabilities similar to the Cray ALPS [5], the latency and per-
formance of these capabilities are unknown, whereas the JETS model would be
able to readily handle almost any imaginable architecture.

The Falkon [37] system enables MTC on Blue Gene/P resources, but only for
single-job executions, and does not support the MPTC paradigm. On the Blue
Gene/P, Falkon places workers on the system’s compute nodes and communicates
with them through an intermediate scheduler placed on the system’s I/O nodes.
Falkon primarily addresses task scheduling, although related project work pro-
duced DataDiffusion [38] to cache data for reuse among compute processes. In
comparison, the JETS mechanism focuses on the deployment of MPI applications,
which is not addressed by Falkon.

3 Use Case and Requirements

As a canonical example of the motivation for many-parallel-task computing, we
consider a classical task and dataflow pattern from molecular dynamics. The
replica exchange method (REM) [44] is a computational method to enhance statis-
tics about a simulated molecular system by performing molecular dynamics simu-
lation of the system at varying temperatures. These simulation trajectories, under
varying conditions, are regularly stopped (typically at a rather high rate), sam-
pled, and compared for exchange conditions. Data exchange may be required at
each stopping point. The simulation is then restarted under the restart file of
neighboring replica to accomplish the state exchange.

The computational workflow is diagrammed in Figure 2. The initial use case
provided by our user group is as follows. Each set of CPUs is initialized with con-
ditions including temperature. Each simulation runs as a NAMD [35] task of 256
compute cores. There are 64 concurrent simulations running on a total of 16,384
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cores. Each simulation is expected to run for 10-100 simulated timesteps, for ap-
proximately 10-60 seconds of wall time depending on the configuration. Smaller
individual runs produce finer granularity exchanges, which are desirable. The sim-
ulations are then stopped, and an external application process performs the replica
exchange among the simulation snapshots. The simulations are then restarted from
the snapshots, and the process repeats until a termination condition is satisfied
approximately 12 hours later. Thus, to keep up with this workload, the scheduler
would have to launch 6.4 MPI executions per second, requiring an individual pro-
cess launch rate of approximately 1,638 processes per second, for a 12 hour period.
The goal of our work is to present a system that provides an elegant scripting ap-
proach to application task management while achieving this level of performance.

This process management and aggregation capability is not supported by pre-
vious systems and is notably difficult to achieve on our primary production target,
the 160,000-core Blue Gene/P “Intrepid” at Argonne National Laboratory. Pass-
ing each job into a cluster scheduler is dramatically less efficient than our use of
persistent worker agents, and cluster-specific policies often prevent such models of
many-parallel-task computing by imposing a limit on the number of jobs in the
queue per user or other inhibiting constraints. For example, at Argonne, jobs must
use a minimum of 512 nodes, whereas our initial application has an efficiency-based
target of 64 nodes (256 cores). Thus, the scientists who motivated the REM use
case above are currently running workloads using an inferior simulation approach
because of the lack of MPTC support on the Blue Gene/P.

Attaining high performance from the centralized JETS scheduler is critical.
Additionally, deploying and using JETS could quickly become complex, because
JETS involves multiple distributed resources as well as the management of user
and system external processes. Thus, the JETS architecture observes the following
principles:

1. Use simple, reusable threading abstractions. This task is accomplished through
the use of existing concurrent data structures.

2. Separate service pipeline processes through simple interfaces. In JETS, socket
management, handler processing, and external process management connect
through obvious mechanisms and are each arbitrarily concurrent.

3. Support ready composition and decomposition. JETS components are easily
composed into frameworks appropriate for different environments (e.g., for
Swift, stand-alone usage, or use within other frameworks such as IPS). The
components can also be decomposed for separate usage (e.g., the JETS worker
agent can serve as a useful component of a benchmarking test framework).

4. Assume disconnection is likely. The JETS service and workers can operate
independently and are individually diagnosable.

4 Technologies

JETS integrates the three technologies described in the following subsections. Al-
though JETS may be used as a stand-alone system, its features are also available
in Swift.
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4.1 Swift/Coasters

An original design goal of JETS was to support the MPTC model in the Swift sys-
tem. Swift [51] is a highly concurrent programming model for deploying workflows
to grids and clusters. Swift was originally developed for grid resources and is es-
sentially a high-level language to build workflows for the Commodity Grid (CoG)
Kit [48]. To support fast task scheduling, Swift uses an associated provider, called
Coasters, that runs as a network of external services, including a CoasterService
and worker scripts. Swift communicates with the CoasterService to schedule jobs
and data movement to the distributed resources. The Swift/Coasters system can
run directly on an HPC resource, launching sequential MTC tasks at high rates
and employing filesystem access optimizations.
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Fig. 3: Swift/Coasters architecture.

Swift/Coasters operations is diagrammed in Figure 3. First, the Swift script
is compiled 1© to the workflow language Karajan, which contains a complete
library of execution and data movement operations. Tasks resulting from this
workflow are scheduled by well-studied, configurable algorithms and distributed
to underlying service providers (external schedulers) including local execution,
SSH [33], PBS [20], SGE [41], Globus [9], Condor [28], Cobalt [8], or the Coasters
provider [19]. The Coasters provider consists of a connection to the CoasterSer-
vice, which itself is deployed as a task 2©. The CoasterService in turn uses task
submission to deploy one or more allocations of “pilot jobs” [29], called Coaster
Workers, in blocks of varying sizes and durations 3©. The CoasterService schedules
user tasks inside these blocks of available computation time and rapidly launches
them via RPC-like communication over a TCP/IP socket 4©. Data transfer opera-
tions may also be performed over this connection, removing the need for a separate
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data transfer mechanism. On the BG/P, the CoasterService may be placed on a
login node, communicating with its workers over the internal BG/P network.

4.2 MPI Process Management: Hydra

The ability to run MPI programs in JETS is built on facilities offered by the MPI
implementation. The MPICH2 implementation of the MPI standard, used in this
work, employs a process manager that is responsible for launching the individual
user processes in coordination with user input and an existing scheduler such as
the local operating system or a distributed scheduler such as PBS [20].

The default process manager in MPICH2 is currently Hydra [22]. The MPICH2
process manager is responsible for launching the user processes (“bootstrapping”,
in Hydra terminology) on the requested resources through a bootstrap control
interface using an available mechanism such as ssh. The user launches MPICH
by invoking mpiexec, which is a Hydra component. Subordinate to mpiexec, ssh is
the launcher that invokes processes on remote resources. In Hydra, the launcher
invokes the Hydra proxy, which is given sufficient environment and arguments to
connect back to mpiexec and receive control commands. The proxy then launches
the user executable; thus commencing user processing and MPI communication.

Hydra was modified for this work through the addition of a bootstrap mecha-
nism called launcher=manual, that employs no existing external scheduler: it simply
reports proxy commands to its output and performs its ordinary network services.
Thus, any other controlling process may use this specification to bring up the
Hydra network and launch the MPI application. This works on any system that
provides sockets, including the ZeptoOS system. Our complete solution uses this
mechanism and is described in Section 5.

4.3 ZeptoOS

JETS relies on the ability to dynamically bind MPI processes together using the
POSIX sockets facility provided by many operating systems. While TCP/IP sock-
ets are a typical mechanism for MPI job coupling on commodity clusters, these
APIs are not provided by default on the Blue Gene/P. The ability to perform
sockets-based MPI messaging on the BG/P is made possible through the use of
functionality provided by ZeptoOS. This Linux-based compute node operating
system optionally replaces the default IBM Compute Node Kernel (CNK) and
enables the user processes to communicate over the BG/P torus interconnect by
using an ethernet network device. This virtual network is then used by the MPI
programs launched by JETS.

5 Design

JETS is based on the basic MTC paradigm of users rapidly submitting large
batches of ordinary command-line program executions to large resources. JETS
assumes that the user can launch a pilot job on the compute resources (starter
scripts are provided with the distribution). The pilot job requests work from a
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centralized dispatcher, which can assign work to given resources by using multiple
scheduler components called handlers. Each handler has a specific input file format,
which is basically a list of literal command lines.

JETS orchestrates the systems described in the previous section into a simple
framework for MPTC. It provides the following features:

1. Speed: JETS is designed to outperform process launchers such as ssh while
enabling security (e.g., OpenSSH tunneling). JETS uses compute sites as they
become available and quickly combines them into MPI-capable groups.

2. Local storage: JETS can cache libraries and tools (such as the MPICH2 proxy
binary) and even user data on node-local storage, which boosts startup per-
formance and thus utilization for ensembles of short jobs. In practice, the files
to be stored in this way are simply provided to the JETS start-up script as a
simple list.

3. Fault tolerance: JETS automatically disregards workers that fail or hang,
minimizing their impact on the overall system.

4. Flexibility: JETS enables fast submission of jobs to worker nodes unreachable
by systems such as OpenSSH (e.g., the Blue Gene/P compute nodes) and
enables the use of smaller MPI sizes than allowed by some site policies.

JETS may be used to submit single-process jobs (as in Falkon) or to submit
MPI jobs. The essential idea in JETS is to transform an MPI job specification
into a set of MPICH proxy job specifications by communicating with a back-
ground mpiexec process and to rapidly submit those proxy jobs to the pilot jobs
for execution.

Performance benefits are obtained through the local, concurrent execution of
the mpiexec processes and the use of the pilot jobs. Hundreds of mpiexec pro-
cesses do not place a noticeable load on the submit site. Additional performance
benefits are gained through the deployment of the proxy executable, the user exe-
cutable, and related libraries in local storage on the compute sites. JETS contains
features to automate these file transfers when resources are allocated by simply
copying them to local storage. JETS features are available in two software sys-
tems: stand-alone form, which submits jobs given by the user in a simple list, and
MPICH/Coasters form, which enables MPI executions to operate on the Coasters
infrastructure with job specifications delivered by a Swift workflow.

5.1 Stand-Alone Form

In stand-alone form, the user must know all of the job specifications in advance,
including the command line and node count. This is formulated in a JETS input
file formatted as:

MPI: 4 namd2.sh input-1.pdb output-1.log

MPI: 8 namd2.sh input-2.pdb output-2.log

MPI: 6 namd2.sh input-3.pdb output-3.log

Such an input file executes a wrapper script around NAMD, operating on
the given files with 4, 8, or 6 nodes allocated to each respective job. Note that
the hostnames to be used by each job are not specified; these are dynamically
determined by JETS at run time based on availability. Files are accessed at the
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given paths directly by the user application. As an optimization, these paths could
contain local storage paths that refer to files copied in by JETS.

Stand-alone JETS operation is diagrammed in Figure 4. The input to JETS
is a simple text file containing command lines to be executed and MPI-specific
information such as the number of nodes on which to run 1©. The user launches the
worker scripts with provided allocation scripts, which use an external system such
as ssh or Cobalt 2©. Once running, each worker is persistent, capable of executing
many tasks as a pilot job. Workers report readiness to the JETS engine. When the
engine has obtained notification from the requisite number of workers for the next
user job in the user list, it launches the mpiexec binary in the background, provides
it with the host information from the ready workers, and obtains proxy startup
information 3©. The mpiexec process continues running in the background. The
proxy jobs are issued to their respective workers 4©, and the proxies connect to the
mpiexec process to negotiate the MPI job start 5©. The MPI application processes
can locate each other to begin MPI communication 6©. On job completion, the
mpiexec process and its proxies terminate. The mpiexec output is checked for errors,
and the workers request additional work, resuming the cycle.

JETS input file
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Fig. 4: JETS architecture.

5.2 MPICH/Coasters Form

Since the essential JETS functionality is to break MPI executions into composite
single-process jobs, it was natural to make JETS functionality available in Coast-
ers and thus to Swift workflow applications. Running MPI jobs in Swift through
the JETS framework is performed by combining the advanced dataflow, task gen-
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eration, data management, and worker management aspects of the Swift/Coasters
architecture with the mpiexec process management of the JETS architecture.

MPICH/Coasters operation is diagrammed in Figure 5. The Swift script exe-
cutes as normal, with the addition of configuration settings for MPI programs 1©.
These settings are packed with the job specification and sent to the CoasterSer-
vice 2©. The CoasterService processes the MPI settings, which affects the Coasters
allocation strategy. For MPI jobs, the CoasterService waits for the appropriate
number of available worker nodes before launching the mpiexec control mecha-
nism, which is similar to that used in Section 5.1. When the job is ready to run,
the mpiexec process is launched locally (not shown) concurrently with the Hydra
proxies. Proxies launch the Swift wrapper script, which manages the user job in
accordance with Swift features. The user executables are then launched, which are
able to locate each other over sockets 3©.

A common practice in workflow design is to write user wrapper scripts to
manage files and set up program executions before calling the application binary
program. This is commonly done in Swift applications as well. This practice is fully
compatible with the MPICH/Coasters system, even though the process tree is deep
(5 levels or more). A PMI RANK (Process Management Interface Rank) variable is
provided to all levels of user programs and may be used to coordinate such scripts.
This value is equivalent to the MPI process rank in MPI COMM WORLD. For example,
if a user desires to perform a simple shell command on the rank 0 process of a
multiprocess job just before job start, this could be performed by the wrapper
shell script that could branch to that shell command by referring to PMI RANK.

mpi.processes = 2; compute(file[6]); 
SwiftScript

Grid commands

<execute><compute><file “f.6.dat”> ...

CoasterService

Su
bm

it 
si

te
Se

rv
ic

e 
si

te

Compute nodes

Pilot job

swift_wrapper
hydra_proxy

 compute

...

Compute sites

Service start (fork, ssh)

Allocation (qsub, ...)
Job start
(message)

Specify 2-processor job1

2

3

Pilot job

swift_wrapper
hydra_proxy

 computeMPI

Task queue: task(compute,nodes=2), ...

Fig. 5: MPICH/Coasters architecture.
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6 Performance Results

In this section, we evaluate the many parallel-task computing model by measur-
ing the performance of its implementations in multiple modes, for synthetic and
realistic workloads. Specifically, we characterize performance parameters for use
cases on three different computing systems and offer configuration details. In this
section, we define a possibly parallel application invocation to be a single “job”,
and use “allocation” in the same sense as the Introduction.

6.1 Stand-alone JETS

Here, we present performance results obtained by running stand-alone JETS bench-
marks in a cluster setting, in a high-performance setting, in a faulty environment,
and in a NAMD-like application. Stand-alone benchmarks avoid the measurement
complexity in a full Swift-based application workflow. Stand-alone JETS could
be used in certain application patterns such as parameter sweep [49], and these
results are relevant for that use case.

6.1.1 Sequential Tasks

Since JETS decomposes user MPI program invocations into a set of sequential
user program invocations, we first measure the JETS performance for sequential
tasks. This test demonstrates the basic task rate at which JETS can submit indi-
vidual sequential tasks to a computing resource. In this series of tests JETS was
configured to run on Surveyor, an IBM Blue Gene/P system at Argonne National
Laboratory. Each task consisted of an external process that did no work; thus, only
the cost of the process startup itself is considered. First, we measured the rate at
which the BG/P compute node can launch processes without JETS (no commu-
nication), using all four available cores. This is shown as the single-point “ideal”
measurement. Then, JETS was used to submit jobs to allocations of increasing
size.

As shown in Figure 6, JETS scales well, achieving over 7,000 job launches per
second on the full rack of Surveyor, which consists of 1,024 compute nodes con-
taining 4,096 cores. This result indicates that JETS will be capable of submitting
the individual jobs generated by the more complex MPICH2-based mechanism
described previously for MPI-based workloads.

6.1.2 MPI Task Launch Performance: Cluster Setting

In our next series of tests JETS was configured to run on Breadboard, a network
of x86-based compute servers at Argonne National Laboratory. In this test, a
simple MPI application was constructed for benchmarking purposes that starts
up, performs an MPI barrier on all processes, waits for a given time, performs a
second MPI barrier, and exits. The number of MPI processes in each invocation
of this application is independent of the size of the whole allocation. In this test,
each data point represents the utilization obtained by running a large batch of
application invocations of varying sizes (shown as n-proc) inside an allocation
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Fig. 6: JETS results for sequential tasks on the BG/P.

of the size given on the x-axis. Each job wait duration was 1 second. System
utilization is reported as

utilization =
duration × jobs × n

allocation size × time
, (1)

where time is the total allocation time.
The workload was run in each of two modes: a “shell script” mode, which

simply calls mpiexec repeatedly, and a mode in which JETS was used. The shell
script mode can use only the entire allocation, whereas the JETS mode may be
run at smaller, varying sizes; the size of the MPI job is shown as either 4-proc or 8-
proc, using 4 or 8 processes across 4 or 8 nodes, respectively. As shown in Figure 7,
JETS can achieve approximately 90% system utilization for the extremely short
(single-second) tasks submitted. This greatly exceeds the utilization available in
an mpiexec-based shell script and indicates that the performance is capable of
scaling to larger resources.

6.1.3 MPI Communication Performance

Next, we measure the messaging performance penalty due to the use of the sockets-
based MPICH2 communication mechanism used by the system. On the Blue
Gene/P, the vendor-provided communication library is expected to be faster than
the socket abstraction used by our MPICH2 library. As described above, the use of
the ZeptoOS-based messaging abstraction is expected to increase message latency
and reduce transmission bandwidth. In this test, a simple “ping-pong” MPI test
was run on two nodes, each of which alternates between calls to MPI blocking send
and receive functions. The buffer was filled once with random data of the given
size and sent back and forth the given number of times. The run time was mea-
sured with MPI Wtime. The program was compiled and run in each of two modes:
“native” mode, which was compiled with bgxlc and uses the default system ker-
nel and settings; and “MPICH/sockets” mode, which uses the MPICH2 library
running on the ZeptoOS sockets layer.
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Fig. 7: MPI/JETS results, cluster setting.

As shown in Figure 8, using MPICH2 as we do results in much higher latency for
small messages and slightly slower bandwidth for large messages. This is primarily
due to the use of TCP by the ZeptoOS mechanism. While this performance penalty
may be problematic for some applications, it must be weighed against the flexibility
and functionality offered by ZeptoOS features and the fault recoverability offered
by TCP-based APIs. Possible network enhancements are considered in Section 7,
and the reliability characteristics are demonstrated in Section 6.1.5.

Fig. 8: MPI messaging performance on BG/P.

6.1.4 MPI Task Launch Performance: Blue Gene/P Setting

JETS was again configured to run on Surveyor. The user application in this case
is the same application used in the cluster setting but was run for a 10-second
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Fig. 9: MPI/JETS results, BG/P setting.

duration. Each node here contains 4 cores. We place only one MPI process per
node in this test case. The n-proc number is as defined in the previous test.

JETS scripts were used to configure the system for compatibility with ZeptoOS
and high performance at this system scale. We used the ZeptoOS node-local RAM-
based filesystem to store the application binary, the Hydra proxy, and requisite
libraries. The script sets LD LIBRARY PATH to locate the node-local system and user
libraries and suppress any lookups to GPFS, which are much more time-consuming
than are local lookups. The scripts also add an entry to /etc/hosts to enable the
Hydra proxy to find the JETS service on the login node. The ZeptoOS IP-over-
torus feature was enabled to provide each node with an IP address obtainable
through ifconfig. This address is connectable by all peer nodes in the allocation
and was used by the JETS components to connect the Hydra processes and thus
launch the MPI program.

We ran the same benchmark application used in Section 6.1.2 with a 10 second
duration. MPI executions were constructed from nodes in the allocation without
regard for their relative network positions; the default JETS behavior is to group
nodes in first come, first served order.

Results are shown in Figure 9. Each line shown represents one MPI task size:
4, 8, or 64-processor tasks. These task sizes were chosen to highlight JETS perfor-
mance characteristics. Each size task was run on allocation sizes of 256, 512, and
1,024 nodes, and only one core per node was used. The number of tasks in the
batch was selected such that each node processed 20 10-second tasks. As shown
in the figure, 4-processor tasks at this duration are sustainable up to about 512
nodes, after which there is a significant degradation from the utilization achieved
by the 8-processor tasks; this is due to the load on the central JETS scheduler be-
coming excessive. The 64-process tasks are individually slower to start, resulting
in lower utilization in small allocations. However, this penalty becomes smaller as
the task size becomes a smaller fraction of the available nodes.
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Fig. 10: MPI/JETS results, faulty setting.

6.1.5 Task Management: Faulty Setting

In this series of tests, we demonstrate that JETS is capable of maintaining high
utilization on the remaining useful compute nodes of a faulty allocation in which
worker script processes terminate early because of system hardware or software
failure. In this case, JETS was run again on Surveyor and the sequential application
from Section 6.1.1 was used again. A fault injection script was run on the submit
site that terminated randomly selected pilot jobs, one at a time, at regular 10
second intervals. Because of skew among the application tasks, this could result
in a worker being terminated during or between application task executions. The
worker and user task start and stop times were recorded, allowing the total system
load and worker count to be obtained and plotted over time.

Results are shown in Figure 10. The number of worker nodes in operation is
shown as “nodes available”; the number steadily decreases from the original level
of 32 workers to zero over a period of about 320 seconds. The number of running
application jobs is plotted as “running jobs.” Initially, the jobs execute in lockstep,
resulting in large utilization dips that become smaller over time. These large dips
are due to congestion on the JETS scheduler when multiple nodes become avail-
able for work simultaneously. The dips become less dramatic as skew reduces the
number of simultaneous work requests. After the 100 second mark, the number of
running jobs is bounded by the number of nodes available. The number of running
jobs stays close to the number of nodes available, indicating that JETS maintains
a high utilization rate on the available nodes.
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Fig. 11: NAMD wall time distribution.

6.1.6 Application: NAMD

In this series of tests, we report utilization results observed when running a bag-
of-tasks batch of NAMD executions, with settings similar to that of the replica
exchange method. JETS was configured to run on Surveyor. The NAMD appli-
cation was configured to run one process per node; the other cores were idle. A
batch of 32 NAMD runs comparable to those used in an REM run was provided
to us by a NAMD user. We duplicated those cases and ordered them in a round-
robin fashion. For each allocation size from 256 to 1,024, we created a batch that
would require 6 executions per node on average. Each run simulated an NMA [34]
system of 44,992 atoms for 10 timesteps, which runs in NAMD for approximately
100 seconds on 4 BG/P processors.

Application I/O is as follows. The application reads 5 files totaling 14.8 MB
of input and writes 3 files totaling 2.2 MB of output, in addition to about 11 KB
on standard output. The I/O time is contained in the application wall time. The
NAMD application performed I/O directly to the PVFS filesystem available on
Surveyor. Standard output was directed back to the mpiexec process. In the JETS
framework, standard output is directed from the application to the Hydra proxy,
over the network to the mpiexec process, into the JETS process, and then into a
file. For the largest run, this approach produced 16 MB of output over 11 minutes,
which was not enough to cause congestion.

The full rack (1,024-node) batch consisted of 1,536 4-processor jobs. A typical
run time distribution for these jobs is shown in Figure 11. (This figure shows the full
distribution for the batch that produced the 64-node result in Figure 18(b).) While
the majority of the tasks fall between 100 and 120 seconds, many tasks exceed this,
running up to 160 seconds. The utilization results (defined in Equation 1), shown
in Figure 12, shows that utilization is near 90%. Load level for the full rack batch,
computed as the number of busy cores at each point in time, is shown in Figure 13.
For a longer run, utilization could be higher as the effect of the ramp-up and long-
tail effects are amortized.
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Fig. 12: NAMD/JETS utilization results.

Fig. 13: NAMD/JETS load level results.

6.2 JETS/Swift Integration

Here, we report on the performance of the integrated JETS/Swift task distri-
bution system. This allows the execution of complex Swift-based workflows. See
Section 5.2 for a description of the software used in this section.

6.2.1 Synthetic Workloads

First, we report utilization results observed when running varying MPI configu-
rations. The test suite constructed for this case allows us to measure utilization
results for various allocation sizes, MPI job sizes, and MPI job core counts.

These tests were performed on Eureka, a 100-node x86-based cluster at Ar-
gonne National Laboratory. Each node contains two quad-core Intel Xeon E5405
processors running at 2 GHz for a total of 8 cores per node with 32 GB RAM. The
system runs a GPFS [39] filesystem. Test allocations were started by Cobalt [8]
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and maintained by a persistent Coasters service [19]. This allowed us to reuse the
allocation for multiple Swift workflows, each of which issued hundreds of MPI jobs
totaling thousands of individual processes.

We constructed an extremely simple MPI task that models useful work. The
synthetic task used in this case runs a variable-sized MPI job. The task performs
an MPI Barrier, then each process sleeps for 10 seconds, then each process cre-
ates and/or writes its MPI rank to a single output file, then performs another
MPI Barrier, then exits. We wrote a trivial Swift script with a loop to generate
tasks that execute this binary:

1 int total = 128;
2 int seconds = 10;
3 file input<"input.txt">;
4
5 foreach i in [0:total-1]
6 {
7 file output<single file mapper;
8 file=@strcat("data-",i,".txt")>;
9 output = mpi-sleep(input, seconds);

10 }

Fig. 14: Swift script for synthetic workload.

Three allocation sizes were chosen on Eureka: 16, 32, and 64 nodes. Each task
was configured as an MPI job and thus processed by the MPICH/Coasters features
as described previously. The number of processes per node is shown as PPN; this
is the number of MPI processes allocated to a given node. Thus the total MPI
size of a given task is the product of nodes per job and PPN. Results are shown
in Figure 15. Note that in the following results, all plots use the same axis ranges
for comparability, even if that resulted in interesting data appearing off-center.

The 10-second job duration was chosen to provide a useful spectrum of perfor-
mance. For a given allocation size, at this duration, increasing task sizes decreases
utilization. Increasing node counts or PPN reduce utilization. This is due to the
increased relative delay in starting a job across a large fraction of an allocation.
Additionally, increasing PPN exacerbates filesystem delays as the application pro-
gram is read multiple times. In production, the primary approach that we would
use to increase utilization for this challenging job duration is to move the applica-
tion program to local storage and use data access optimizations available in Swift
and Coasters.

6.2.2 REM Dataflow

Next, we describe the use of Swift to carry out a series of REM runs using NAMD.
In this case, we perform a real replica exchange workflow in which segments and
exchanges are data-dependent; each subsequent step in the workflow depends pre-
cisely on its inputs. Thus, a great deal of concurrency and asynchronicity is avail-
able. The individual NAMD segments are not just executed concurrently; they are
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(a) Allocation size: 16 nodes (b) Allocation size: 32 nodes (c) Allocation size: 64 nodes

Fig. 15: Synthetic workload results.

also launched independently of the state of the workflow at large: they depend
solely on their neighbor replicas for input data.

Describing this asynchronicity in a traditional scripting language such as Perl
or Python would be quite difficult and would require user interaction with low-level
operating system interfaces such as waitpid() as well as a nontrivial control loop, in
addition to the complexity of quickly starting each available MPI job on free nodes.
In our implementation, the dataflow diagrammed in Figure 16 is represented in
under 200 lines of Swift script including comments and data definitions. Note that
although the shapes are drawn to standard size to make the dependency structure
readable, the times actually vary considerably (as illustrated in Figure 11). The
core loop code is shown in Figure 17; some data definitions and data initializations
are not shown.

The REM dataflow proceeds as follows. In Figure 16, each row from top to
bottom represents a replica trajectory and is represented in the script as variable i.
Each column from left to right represent progress made after exchange completion
and is represented in the script as variable j. Each segment (i, j) is associated with
a segment index ; script variables current, previous, neighbor, and total are of
this type. Script variables c, v, and s, represent conventional NAMD coordinates,
velocities, and extended system files; o represents NAMD standard output (which
contains application statistics) and x contains output from the exchange script
(which is primarily used as a token for synchronization). These arrays are indexed
by the segment index number and are mapped to real disk files through the Swift
mapping abstraction (details not shown). Thus, segment k is associated with 5
dataflow files and represents 10 simulated time steps.

The statements in the Swift script are interpreted according to Swift semantics:
they are all executed concurrently, limited by data dependencies. Each NAMD
execution is handled by the namd() function which assigns the result of running
NAMD on the files from the previous segment into the current segment. This
creates a dataflow dependency from left to right in the diagram.

Similarly, the exchange() function executes the exchange required for REM.
Notably, the exchange record in x is required for each namd() call in addition to
NAMD application data. Certain conventional application data files are reused in
each NAMD execution: pdb file, prm file, and psf file. The if control state-
ments ensure that the exchange is performed by alternating replicas. In Swift
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scripts, the %% operator represents modulus, allowing for the determination of the
parity of a number and for the exchange to wrap around in odd exchanges. The
exchange function is implemented as a shell script that performs file operations
to carry out the exchange. Swift was configured to perform the filesystem-bound
exchange operations on the login node, freeing the compute nodes for the next
ready NAMD segment.
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Fig. 16: Asynchronous REM dataflow as implemented in Swift.

The Swift script implementation is structured to allow maximal concurrency,
mitigate the effect of the variation in NAMD execution time, and minimize the
effects of the data-dependent synchronization. In both measurement series, the
number of replicas in the ensemble is twice the hardware concurrency available,
thus, when a NAMD invocation terminates, another is always ready to run. Ad-
ditionally, since the performance of the single-process exchange() implementation
is bound to filesystem latency, it is executed on the login node, preventing that
process from delaying a ready multiprocess NAMD invocation.

We executed this script on the same infrastructure as in the previous section
(Eureka) under identical settings. In each case, utilization was measured by com-
paring the wall time reported by NAMD to the wall time in the allocation used by
Swift, as calculated in Equation 1. Thus, any long tail effect [2] is charged against
the utilization.

We first executed the script with NAMD configured to run in a single-process
mode for each segment with up to 64 nodes, each segment running as a single
process on a single node. In each script execution, the number of replicas in the
dataflow was twice the number of nodes, and 4 exchanges were performed. The
result of this series of measurements is shown in Figure 18a.

We then executed the script with NAMD configured to run as an MPI program
for each segment with up to 64 nodes. For each allocation size from 8 to 64, the
number of concurrently executing replicas was 4, and the total number of replicas
in the dataflow was 8. All 8 cores on each core were used. Thus, for the 8-node
allocation, each replica segment ran on 2 nodes with 16 MPI processes, and so
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1 global coordinates c[]<array mapper, ...>;
2 global velocities v[]<array mapper, ...>;
3 global xsc s[]<array mapper, ...>;
4 global output o[]<array mapper, ...>;
5 global exchange x[]<array mapper, ...>;
6
7 foreach j in [0:exchanges-1]
8 {
9 foreach i in [0:replicas-1]

10 {
11 // Index of previous segment
12 int previous = i*(exchanges+1) + j;
13 // Index of segment we are currently defining
14 int current = previous+1;
15
16 // Run NAMD
17 (c[current], v[current],
18 s[current], o[current]) =
19 namd(namd template, fftw file,
20 pdb file, prm file, psf file,
21 c[previous], v[previous],
22 s[previous], x[previous],
23 i, current);
24
25 // Perform exchange
26 int neighbor;
27 if ((j %% 2) == 0)
28 {
29 // Perform exchanges from odd replicas
30 if ((i %% 2) == 1)
31 {
32 neighbor =
33 (current + (exchanges+1)) %% total;
34 (x[current], x[neighbor]) =
35 exchange(c[current], c[neighbor],
36 v[current], v[neighbor], j);
37 }
38 }
39 else
40 {
41 // Perform exchanges from even replicas
42 if ((i %% 2) == 0)
43 {
44 neighbor = current + (exchanges+1);
45 (x[current], x[neighbor]) =
46 exchange(c[current], c[neighbor],
47 v[current], v[neighbor], j);
48 }
49 }
50 }
51 }

Fig. 17: Swift script for REM core loop
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(a) Single-process NAMD executions (b) NAMD executions as MPI processes

Fig. 18: REM/Swift results.

forth. Over the dataflow, 6 exchanges were performed. The result of this series of
measurements is shown in Figure 18b.

Neither case used specialized data management functionality provided by Swift [53]
or JETS as used in Section 6.1.4. Available optimizations that could be used in
a production run include copying programs to local storage on compute nodes,
changing operating system settings to prevent unnecessary filesystem accesses to
GPFS, or prestaging reused data files (e.g. pdb file) to local storage. Thus, all
programs and data were read and written to GPFS, and our results show what a
first-time user would experience in a straightforward use case.

For the single-process case, as the allocation size was increased from 4 to 64,
utilization decreased down to 85.4%. In the MPI case, utilization did not change
substantially over the measured range of allocation sizes, remaining between 92.7%
and 95.6%.

Decreases in utilization comes from three sources: Swift/Coasters processing
time, filesystem delays, and executable launch time. Swift/Coasters processing
time is consumed by the Swift data dependency engine producing the task de-
scription and the Coasters system transmitting that task to a worker; however,
the task rates in this use case do not approach known Swift/Coasters capabili-
ties [19]. Filesystem accesses to GPFS are the likely cause of lost utilization for
the single-process case, as the large number of independent replicas produce si-
multaneous small-file accesses. Most important for this work, the utilization for
MPI use cases exceeds that of single-process use cases, showing that the use of the
new JETS-based job launch features does not constrain utilization.

7 Future Work

Many improvements and extensions to JETS are planned, including the following.

In order to simplify its implementation and focus on algorithms, the initial
JETS version uses MPI over standard TCP sockets. To take better advantage of
the native high- performance interconnect fabric on petascale systems such as Blue
Gene/P and Cray XE, we plan to enhance JETS with support for vendor-provided
MPI over the native communication fabric libraries (such as Blue Gene DCMF and
Cray GNI).
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While JETS currently operates at high speed in part because it uses a simple
FIFO queuing approach, we plan to explore the addition of priority-based schedul-
ing and backfill and to measure scheduler performance on workloads of varying
size tasks. (At the same time, such workloads seldom occur in typical MPTC
applications and are thus of low priority to current user applications.)

We plan to add the “multiple-job-size spectrum” allocator of the Coasters
mechanism to JETS to enable it to request resources from the underlying system
scheduler in a “spectrum” of various node counts, to enable it to obtain resources
quickly in the face of unknown queue compositions and system load conditions.

We will experiment with MPI-IO from JETS-initiated MPTC workloads, and
work on optimizations for supporting the passing of MPI-IO-written and -read
datasets within an MPTC dataflow. Similarly, such high-performance data-passing
schemes can also be evaluated using Global Arrays [32] or distributed hash tables
[52].

JETS does not currently have a mechanism by which nodes may be grouped
with respect to network location. This feature could be important if given workflow
is running on multiple clusters simultaneously, and joining MPI processes on the
same cluster should be preferred to running MPI jobs across clusters; in fact, some
users would probably like to prohibit the latter.

8 Conclusion

As we’re really not together at all, but parallel. [27]

The parallel ensemble application, consisting of the composition of large numbers
of many-processor MPI executions, is an increasingly popular paradigm that is
poorly supported by existing systems. In this work, we described a new lightweight
mechanism to support MPTC. Our work is focused on gaining high utilization rates
for applications on large-scale HPC resources. Our work includes the coordination
of large numbers of CPUs, the management of many MPICH2 startup processes,
the rapid distribution of job specifications to workers, and the construction of ap-
plication scripts through integration with the Swift language and runtime system.

From a performance perspective, we demonstrated that the JETS task sched-
uler can launch single-process jobs at a rate exceeding that of previous many-
task schedulers, and showed that moving to multiple-process MPI jobs does not
restrict performance. Additionally, we provided new mechanisms for the deploy-
ment of MPI applications into many-task systems; in particular, the new MPICH
functionality could be reused by other groups developing other novel strategies to
launch MPI applications.

We expect that JETS and related systems will emerge as powerful tools in im-
portant areas, including rapid prototyping of batches of existing codes and large
ensemble studies based on loosely coupled MPI runs. Our system promotes the
rapid development of large runs of existing codes through its simple model and
optional scripting language interface. The system provides a shell script-like model
but offers much better performance and management capabilities. New applica-
tions could be designed around the JETS model. These applications would benefit
from the ability of the JETS to manage multiple scheduler allocations in a fault-
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tolerant way. Moreover, the software development would benefit from the high-level
Swift model.
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