
An Opportunistic Algorithm
for Scheduling Workflows on Grids

Luiz Meyer1, Doug Scheftner2, Jens Voeckler2,
Marta Mattoso1, Mike Wilde3, Ian Foster2, 3

1Federal University of Rio de Janeiro - COPPE, Department of Computer Science
2University of Chicago - Department of Computer Science

3Argonne National Laboratory - Mathematics and Computer Science Division

Abstract. The execution of scientific workflows in Grid environments imposes
many challenges due to the dynamic nature of such environments and the
characteristics of scientific applications. This work presents an algorithm that
dynamically schedules tasks of workflows to Grid sites based on the
performance of these sites when running previous jobs from the same
workflow. The algorithm captures the dynamic characteristics of Grid
environments without the need to probe the remote sites. We evaluated the
algorithm running a workflow in the Open Science Grid using tweve sites. The
results showed improvement up to 120% relative to other four usual scheduling
strategies.

1 Introduction

Grids [9] are emerging as virtual platforms for high performance and integration of
networked resources. In these environments, distributed and heterogeneous resources
owned by independent organizations can be shared and aggregated to form a virtual
computer. Scientific applications usually consist of numerous jobs that process and
generate large datasets. Frequently, these components are combined generating
complex scientific workflows. Therefore, scientific communities like physicists,
biologists, astronomers are using the grid computing to solve their complex large-
scale problems.

Processing scientific workflows in a Grid imposes many challenges due to the
large number of jobs, file transfers and the storage needed to process them. The
scheduling of a workflow focuses on mapping and managing the execution of tasks on
shared resources that are not directly under the control of the workflow systems [23].
Thus, choosing the best strategy for a workflow execution in a Grid is a challenging
research area.

Often, a scientific workflow can be represented as a Directed Acyclic Graph
(DAG) where the vertices represent tasks and the edges represent data dependencies.
One alternative to process this kind of workflow is to statically pre-assign tasks to
resources based on the information of the entire workflow. This strategy can be used

 Candidate to the Best Student Paper Award

by a planner to optimize the execution plan for the DAG [6]. However, since a Grid
execution environment can be very dynamic, this alternative may produce poor
schedules because by the time the task is ready to run the resource may be
unavailable. Besides, it is not easy to accurately predict the execution time of all
tasks. Another scheduling approach is to perform the assignment of tasks to resources
dynamically as soon as the task is ready to be executed. In this case, if a resource is
not available, it will not be selected to process the task. However, many sites can be
available to run the task, and selecting the best one can be done according to many
alternatives, like number of processors in the site, load balance or data availability.

This work presents an algorithm, which we name Opportunistic, which
dynamically assigns jobs to grid sites. The algorithm adopts an observational
approach and exploits the idea of scheduling a job to a site that will probably run it
faster. The opportunistic algorithm takes into account the dynamic characteristics of
Grid environments without the need to probe the remote sites. We compared the
performance of the opportunistic algorithm with different scheduling algorithms in a
context of a workflow execution running in a real Grid environment. We conducted
our experiments using the Virtual Data System (VDS) [10], which defines an
architecture to integrate data, programs, and the computations performed to produce
data. VDS combines a virtual data catalog for representing data derivation procedures
and derived data with a virtual data language that enables the definition of the
workflows. VDS also provides users with two planners that schedule jobs onto the
grid and manage their execution. Scheduling in VDS can be done according to a
family of site selectors available for user needs. This work extends the library of site
selectors with a new Opportunistic site selector algorithm. Our results with
experiments in a real Grid environment suggest that the opportunistic algorithm can
increase performance up to 120% when compared to scheduling algorithms, currently
adopted in most systems, particularly in VDS.

The rest of this paper is organized as follows. Section 2 discusses the related work
that deals with grid scheduling. Section 3 describes the Virtual Data System
architecture where the opportunistic strategy was implemented while in section 4, we
detail the opportunistic algorithm. In section 5 we describe the experiments performed
and in section 6 the experimental results are analyzed. Finally, section 7 concludes
this work and points to future directions.

2 Related Work

Finding a single best solution for mapping workflows onto Grid resources for all
workflow applications is difficult since applications and Grid environments can have
different characteristics [23]. In general, scheduling workflow applications in
distributed environments is done by the adoption of heuristics. There are many works
in the literature addressing the benefits of the scheduling based on data locality in
scenarios of data grids. Casanova et al. [2] propose an adaptive scheduling algorithm
for parameter sweep applications where shared files are pre-staged strategically to
improve reuse. Ranganathan and Foster [17, 18] evaluate a set of scheduling and
replication algorithms and the impact of network bandwidth, user access patterns and

data placement in the performance of job executions. The evaluation was done in a
simulation environment and the results showed that scheduling jobs to locations
where the input data already exists, and asynchronously replicating popular data files
across the Grid provides good results. Cameron et al. [4, 5] also measure the effects of
various job scheduling and data replication strategies in a simulation environment.
Their results show benefits of scheduling taking into account also the workload in the
computing resources. Mohamed and Epema [14] propose an algorithm to place jobs
on clusters close to the site where the input files reside. The algorithm assumes
knowledge about the number of idle processors and the size of the input file for
scheduling a job.

The workloads studied in these works consist of a set of independent jobs
submitted from different users spread over different sites. Our work differs by
focusing on scheduling jobs belonging to a single application, which is a workflow,
submitted from a single user in a single site.

Many researchers have studied scheduling strategies for mapping application
workflows onto the grid. Ammar et al. [1] developed a framework to schedule a DAG
in a Grid environment that makes use of advance reservation of resources and also
considers the availability knowledge about task execution time, transfer rates, and
available processors to generate a schedule. Their simulation results show advantages
of unified scheduling of tasks rather than scheduling each task separately. Mandal et
al. [13] apply in-advance static scheduling to ensure that the key computational steps
are executed on the right resources and large scale data movement is minimized. They
use performance estimators to schedule workflow applications. Wieczoreket et al.
[22] compare full graph scheduling and just-in-time strategies for scheduling of
scientific workflow in a Grid environment with high availability rate and good control
over the resources by the scheduler. Their results show best performance for full
graph scheduling. Deelman et al. [6, 7] can map the entire workflow to resources at
once or portions of it. This mapping can be done before or during the workflow
execution. Their algorithm prefers to schedule computation where data already exist.
Additionally, users are able to specify their own scheduling algorithm or to choose
between a random and a round robin schedule technique. Dumitrescu et al. [8] studied
the performance execution of Blast jobs in Grid3 [11] according to several scheduling
algorithms. In their experiments they used a framework that considered resource
usage policies for scheduling the jobs. Their results showed that random and round-
robin algorithms achieved the best performance for medium and large workloads.

Triana [12] allows scientists to specify their workflows which can be scheduled
directely by the user or by the GriLab Resource Management System. In this case, the
scheduling is done according to requirements specified for each task. Taverna [15]
provides a set of tools to define bioinformatics workflows based on a composition of
web services, but not much detail is given about the scheduling of tasks.

In our work, we also deal with the problem of scheduling jobs belonging to a single
application, which is a workflow expressed as a DAG. Like in the previous workflow
scheduling works, the goal of the scheduling is to minimize the overall job
completion. In our algorithm, the planning scheme is completely dynamic and based
on an observational approach. We do not consider performance estimation of Grid
resources, use of advance reservations or requirements specifications. The

performance evaluation was conducted in a real Grid environment without any control
over the resources.

3 VDS planning architecture

In VDS, users specify their workflows through the use of VDL [10]. The VDC
(Virtual Data Catalog) stores the user’s workflow definition and provides the planner
with the logical file names of the files and the name of the transformations
(executable programs). The Replica Catalog provides the physical name for the input
files given their logical file names. The transformation catalog (TC) specifies how to
invoke (executable name, location, arguments) each program. Finally, the Pool
Configuration catalog is responsible to provide the information about the desirable
grid sites to run the workflow. Figure 1 illustrates the VDS planner architecture.

Fig. 1. VDS Planner architecture

Fig. 2. VDS Planning mechanism

Site
Catalog

Logical
File Name

Transformation

Sites

Physical
File Name

Transformation
Location

Planner

Transformation
Catalog

Virtual Data
Catalog

Replica
Catalog

DAG

DagMan

TC

Site 1

Site 2

Site 3

Site n

Grid

Pre PosSite
Selector

Planner

candidates

solution SC RC

Condor
Queue

The planner makes use of a site selector mechanism in order to schedule each job
of the workflow. The goal of the site selector is to choose a grid site capable to
execute a given job. In the VDS planner, the pre-script dynamically builds a list of the
available sites for executing each job based on the information of the Transformation
Catalog and Pool Configuration. The Pre-script then calls the site selector mechanism
and waits for the solution, that is, the site selected for the job execution. The solution
returned by the site selector is passed to Dagman [3], which is responsible for
scheduling the job into the grid.

Figure 2 details the planner’s functionality and its interaction with a site selector.
After receiving the identification of the site to run the job, the VDS-Planner executes
the replica selection by querying the Replica Location Service to locate all replicas for
each file. If there is a replica located in the selected site then this replica will be
chosen. Otherwise, the planner will perform a third party transfer of the input files
from the sites where they are located to the site where the job is supposed to run.
Whenever a job ends, all input files dynamically transferred for the job execution site
are erased in the post-processing step.

4 The opportunistic algorithm

Scheduling workflow tasks in Grid environments is difficult because resource
availability often changes during workflow execution. The main idea of the
opportunistic algorithm is to take advantage of this environment changes without
needing to probe the remote sites. In order to implement our opportunistic algorithm
using VDS, a few extensions were promoted in the system: we created a control
database for logging the location and the status of the workflow jobs, and coded a site
selector routine responsible for choosing the execution site for a job. Since the control
database is updated by the postscript of each job, the VDS postscript code also had to
be modified.

Fig. 3. The opportunistic site selector architecture

The goal of the opportunistic site selector is to select a site to run a job based on
the performance of each site when running previously jobs of the same workflow. In

Opportunistic
Site Selector

Control

Candidates

Solution

Job
Site
Status

Ratio

Job, Site, Status

MonitQueue
Job, Status, Duration

Kill

Planner

Pos

Pre

Condor
Queue

other words, the site selector assigns more jobs to sites that are performing better,
according to the architecture in Figure 3. The performance is measured by the ratio
(number of ended jobs / number of submitted jobs) at each site, as shown in the
algorithm from Figure 4. As long as no jobs have completed, the site selector
performs a round robin distribution between the sites. In order to keep track of the
submissions and completions of the workflow jobs, the site selector makes use of a
control database.

Fig. 4. The opportunistic algorithm

Algorithm: Opportunistic
Input: Job J to be submitted.
Set Se {si} of availables sites informed by the planner.
Set So {si} of sites informed by the Control Database
ƒ1(S) → Number of jobs scheduled to site S
ƒ2(S) → Number of jobs ended at site S
ƒ3(max) → Site;
ƒ4(min) → Site;
ƒ5 → {ji} ; Set of submited jobs
Output: Solution - Identification of the Site selected to run the job.
Initialization:

 flag ← 0
 min ← high value
 max ← low value
 Steps:

1. Foreach site si Є So do
 1.1 if si Є Se then
 1.1.1 Ti,s ← ƒ1(si)
 1.1.2 if Ti,s < min then
 1.1.2.1 min ← Ti,s
 1.1.3 Ti,c ← ƒ2(si)
 1.2 if Ti,c > 0 then
 1.2.1 Ri ← (Ti,c / Ti,s)
 1.2.2 flag ← 1
 1.2.3 if Ri > max then
 1.2.3.1 max ← Ri

2. if flag = 1 then
 2.1 Solution ← ƒ3(max)

 2.2 else Solution ← ƒ4(min)
 3. To ← ƒ5
 4. if T Є To then
 4.1 update siteid for job T
 4.2 else insert tuple (T, solution)
 5. Return Solution

Whenever the site selector chooses a site to run a job, one record is inserted in the
control database with the identifications of the job, the identification of the selected
site and a status set to “submitted.” Whenever a job ends, another record with job
identifier, site, and status set to "ended" is also added. This last insertion is done by
the postscript of every job.

The second component of the opportunistic approach is a queue monitor for the
submitted jobs of the workflow. The main motivation to develop this component is
that is very usual to have jobs submitted waiting for execution in remote queues. The
goal of MonitQueue is to keep track of the jobs submitted by DagMan/Condor in
order to remove those jobs that are not presenting a desired performance. In the actual
implementation, the user must inform the maximum time a job can wait in a queue in
an idle status. When a job reaches this time it is killed and automatically re-planned
by Euryale. In this case, the opportunistic site selector will choose another site to run
the job.

5 Experiments

Many scientific applications can be characterized as having sets of input and
derived data that have to be processed in several steps by a set of programs. These
batch-pipelined workloads [21] are composed of several independent pipelines and
each pipeline contains sequential processes that communicate with the preceding and
succeeding processes via data files.

Fig. 5. The pipelined workflow

We defined a pipelined workflow to evaluate a set of scheduling strategies in this
experiment. The design of the workflow is shown in figure 5 while figure 6 depicts
the corresponding DAG. There is an input dataset D1 with only one file which is
input for the first and second programs in the pipeline. The first program also has as
input file, a file belonging to dataset D2. Program P2 process the output generated by
P1 and also has more two files as input for its processing: the file from D1 dataset and
a file from dataset D4. The third and last program of the pipeline processes the output
file produced by P2 and outputs a file for the dataset D6. The width of the pipeline
was set to 100 nodes in each level, totalizing 300 jobs in the workflow.

Currently, the VDS system provides three choices for the planners: Round-Robin,
Random and Weighted-Linear-Random. We evaluated the Opportunistic algorithm
against the Weighted-Linear-Random, Round-Robin, Last-Recent-Used and Data-

P1 D3 D5D2 D6P2 P3

D4

D1

Present algorithms. The last two strategies were coded for the experiments. The
overall ideas of these algorithms are:

1. Weighted-Linear-Random (WLR)- The execution site is selected randomly
but sites with more processors receive more jobs to process.

2. Round-Robin - Jobs are sent to sites in a round-robin way. Thus, the number
of jobs assigned to each site is the same.

3. Last-Recent-Used(LRU) - The execution site corresponds to the site where
the last job ended.

4. Data-Present - A job is sent to a site with the most files that it needs. If
more than one site qualifies then a random one is chosen.

5. Opportunistic - The execution site is selected according to the performance
of each site. This performance is measured by dividing the number of
concluded jobs by the number of submitted jobs at each site. While there are
no jobs concluded, a round-robin scheduling is performed.

Fig. 6. The DAG shape for the pipelined workflow

Table 1 - Resources available by OSG sites

Site Processors
UIOWA_OSG_PROD 6

HAMPTONU 8
PURDUE_PHYSICS 63
UFLORIDA_IHEPA 70

UWMADISON 83
UC_ATLAS 110
UTA_DPCC 148

UERJ_HEPGRID 160
CIT_T2 224

UWMILWAUKEE 304
OSG_LIGO_PSU 314
USCMS_FNAL 989

D3

D5

P2

P3

D2

P1

D6

D4

D3

D5

P2

P3

D2

P1

D6

D4

D3

D5

P2

P3

D2

P1

D6

D4

D3

D5

P2

P3

D2

P1

D6

D4

D3

D5

P2

P3

D2

P1

D6

D4

…

D1

We conducted the experiments using twelve sites from the Open Science Grid [16].
Table 1 shows a snapshot of the total resources available at each site. In order to not
interfere with the production, we defined all workflow jobs as sleep jobs. We used
two different machines at University of Chicago for running Dagman and the replica
catalog respectively. A third machine at the same site was used to store all the input
files for the workflow. Table 2 shows the average execution time and transfer time for
each type of job and file of the workflow. The size of all input and output files is one
megabyte.

Table 2 - Average time in seconds for data transfer and execution according to the type of the
workflow level

 P1 P2 P3
Number 100 100 100

Transfer time 17 27 13
Execution time 300 120 60

6 Results

We executed the workflow twenty times for each scheduling strategy, totalizing
30,000 job executions. Figure 7 presents the performance results for all algorithms.
As can be noted, the performance of the five algorithms is almost the same during the
execution of the first hundred jobs of the workflow. Opportunistic, Last-Recent-Used
and Round-Robin algorithms adopt the same scheduling strategy while there is no job
concluded. The Data-Present algorithm uses a strategy similar to Weighted-Linear-
Random while there is no site with the needed input files for the job. Since there is no
dependencies among the jobs in the first level of the workflow, Condor/DagMan can
submit them as soon as the pre-script of each job is finished. The time to transfer the
input files is very low and consequently the pre-processing for each job is very fast
causing most jobs in this level to be scheduled before any job had finished. As soon as
the jobs in the first and second levels begin to finish, Opportunistic, Last-Recent-Used
and Data-Present start to schedule according different approaches. Opportunistic and
Last-Recent-Used use their observational characteristics while Data-Present takes
advantage of data locality. In the first case, the scheduling starts to be done based on
the ratio (jobs concluded/jobs submitted) while Last-Recent-Used starts to schedule to
the site that finished the processing of the last job.

The Opportunistic algorithm benefits from the dynamic aspects of the Grid
environment. If a site happens to perform poorly, then the number of jobs assigned to
this site decreases. Similarly, if a site process jobs quickly, then more jobs are
scheduled to that site.

The Last-Recent-Used algorithm may not present a good performance when a job
is scheduled to a site and have to wait a long period of time in the remote queue.
When this happens, the next job in the workflow will probably show the same
performance problem because it must be scheduled to run in the same site. This kind

of problem is avoided by the Opportunistic algorithm because a job can be cancelled
by Moniqueue if it was not started after a determined period of time.

Since the size of the files generated during the execution is small, the time to
transfer these files does not impact the performance and does not bring benefits to
Data-Present algorithm.

Fig. 7. Execution time by algorithm

 Fig. 8. Basic execution statistics Fig. 9. Speedup by algorithms

Round-Robin provides a good load balance among the sites but since the
performance varies among sites, scheduling the same number of jobs to each site is
not beneficial. Weighted-Linear-Random does not show a good performance because
scheduling more jobs to sites with more resources does not guarantee better results
since jobs can have to wait in the remote queues. It seems that this kind of strategy is
more indicated to Grid environment where resources can be reserved for the entire
execution of the workflow.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

tim
e

(m
in

ut
es

)

Jobs

Execution Time

Opportunistic
LRU

WLR
Data Present
Round Robin

Speedup

0

5

10

15

20

25

30

OPP LRU WLR DPT RR

Algorithms

Basic Statistics

0

100

200

300

400

500

OPP LRU WLR DPT RR

Algorithms

Ti
m

e
(m

in
ut

es
)

Avg Med Max Min

Figure 8 shows a set of few basic statistics about the workflow runnings. As can be
observed, the minimum execution time is almost the same for all algorithms. This
occurs because eventually all sites may be presenting a good performance due to
having processing resources available by the time of the execution. However, the
most usual behavior is to have sites presenting different performance as the workflow
is being processed. Consequently, the median, average and maximum execution time
differ according to the execution strategy.

Figure 9 shows the speedup of the five algorithms. The execution of the workflow
with the opportunistic algorithm was approximately twenty five times faster than
running in a single machine. The speedup achieved by the Opportunistic algorithm
was more than 150% higher than the other strategies.

7 Conclusions and Future Work

We have proposed a new “opportunistic” algorithm for scheduling jobs in grid
environments, and compared its performance with other algorithms. In particular, we
analyzed the performance with a very common workflow pattern, a pipeline of
programs. The results showed that the Opportunistic algorithm provided superior
performance when compared to other four VDS algorithms for scheduling workflows
jobs. The performance improvement is achieved as a consequence of the
observational approach implemented by the algorithm. This approach exploits the
idea of scheduling jobs for sites that are presenting good response times and to cancel
jobs that are not being executed after a period of time. The algorithm is not aware of
sites capabilities and does not need to collect data from remote sites being easy to
implement and can be used by other workflow engines.

We intend to perform more comparative experiments with other scheduling
algorithms to confirm the efficiency of the Opportunistic algorithm. We also intend to
study the performance of the algorithm when dealing with other workflow patterns
and sizes, and to promote extensions in order to analyze the impact of dealing with
different sizes of historical data to compute a site's value.

Acknowledgements

This work is supported in part by the National Science Foundation GriPhyN project
under contract ITR-086044, U.S. Department of Energy under contract W-31-109-
ENG-38 and CAPES and CNPq Brazilian funding agencies.

References

1. Ammar H. Alhusaini, Viktor K. Prasanna, C.S. Raghavendra. "A Unified Resource
Scheduling Framework for Heterogeneous Computing Environments," hcw, p. 156,
Eighth Heterogeneous Computing Workshop, 1999.

2. Casanova, H., Obertelli, G., Berman, F., Wolski. R., The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid, in SuperComputing 2000, Denver,
USA, 2000.

3. DagMan, http://www.cs.wisc.edu/condor/dagman/.
4. D.G. Cameron, R. Carvajal-Schiaffino, A.P.Millar, Nicholson C., Stockinger K., Zini,

F., Evaluating Scheduling and Replica Optimisation Strategies in OptorSim, in Proc. of
4th International Workshop on Grid Computing (Grid2003). Phoenix, USA, November
2003.

5. D.G. Cameron, R. Carvajal-Schiaffino, A.P.Millar, Nicholson C., Stockinger K., Zini,
F., Evaluation of an Economic-Based File Replication Strategy for a Data Grid, in Int.
Workshop on Agent Based Cluster and Grid Computing at Int. Symposium on Cluster
Computing and the Grid (CCGrid2003), Tokyo, Japan, May 2003.

6. Deelman,E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi, K.,
Livny, M., Across Grids Conference 2004, Nicosia, Cyprus

7. Deelman, E., Blythe, J., Gil, Y., Kesselman,C., Workflow Management in GriPhyn,
The Grid Resource Management, Netherlands 2003.

8. Dumitrescu, C, Foster, I., Experiences in Running Workloads over Grid3, GCC 2005,
LNCS 3795, pp.274-286, 2005.

9. Foster, I., Kesselman, C., 1999, Chapter 4 of "The Grid 2: Blueprint for a New
Computing Infrastructure", Morgan-Kaufman, 2004.

10. Foster, I., Voeckler,J., Wilde,M., Zhao, Y., Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation, in 14th International
Conference on Scientific and Statistical Database Management (SSDBM 2002),
Edinburgh, July 2002.

11. Foster, I. et al.,The Grid2003 Production Grid: Principles and Practice, in 13th
International Symposium on High Performance Distributed Computing, 2004.

12. GOODALE, T., TAYLOR, I., WANG, I., "Integrating Cactus Simulations within
Triana Workflows", In: Proceedings of 13th Annual Mardi Gras Conference - Frontiers
of Grid Applications and Technologies, Louisiana State University, pp. 47-53,
February, 2005.

13. Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Crummey, J., Liu, B., Johnsson, L.,
Scheduling Strategies for Mapping Application Workflows onto the Grid, The 14th
IEEE International Symposium on High-Performance Distributed Computing (HPDC-
14), Research Triangle Park, NC, USA, July 2005.

14. Mohamed, H.H., Epema, D.H.J., An Evaluation of the Close-to-Files Processor and
Data Co-Allocation Policy in Multiclusters, IEEE International Conference on Cluster
Computing, San Diego, USA, September 2004.

15. Oinn, T., ADDIS, M., FERRIS, J. et al, 2004, "Taverna: a Tool for the Composition
and Enactment of Bioinformatis Workflow", In: BIOINFORMATICS, vol. 20, no 17
2004, pp. 3045-3054, Oxford University Press.

16. Open Science Grid, http://www.opensciencegrid.org
17. Ranganathan,K., Foster,I., Simulation Studies of Computation and Data Scheduling

Algorithms for Data Grids, in Journal of Grid Computing, V1(1) 2003.
18. Ranganathan,K., Foster,I., Computation Scheduling and Data Replication Algorithms

for Data Grids, 'Grid Resource Management: State of the Art and Future Trends', J.
Nabrzyski, J. Schopf, and J. Weglarz, eds. Kluwer Academic Publishers, 2003.

19. Shan,H., Oliker, L., Smith, W., Biswas, R., Scheduling in Heterogeneous Grid
Environments: The Effects of Data Migration, International Conference on Advanced
Computing and Communication, Gujarat, India, 2004.

20. Singh, G., Kesselman, C., Deelman, E., Optimizing Grid-Based Workflow Execution,
work submitted to 14th IEEE International Symposium on High Performance
Distributing Computing, July 2005.

21. Thain,D., Bent,J., Arpaci-Dusseau, A., Arpaci-Dusseau,R., Livny, M., Pipeline and
Batch Sharing in Grid Workloads, 12th Symposium on High Performance Distributing
Computing, Seattle, June 2003.

22. Wieczorek, M., Prodan, R.,Fahringer,T., Scheduling of Scientific Workflows in the
ASKALON Grid Environment, SIGMOD Record, Vol. 34, No.3, September 2005.

23. Yu,J., Buyya, R., A Taxonomy of Scientific Workflow Systems for Grid Computing,
SIGMOD Record, Vol.34, No.3, September 2005.

24. Zhang, X., Schopf, J., Performance Analysis of the Globus Toolkit Monitoring and
Discovery Service, Proceedings of the International Workshop on Middleware
Performance (MP 2004), part of the 23rd International Performance Computing and
Communications Conference (IPCCC), April 2004.

