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Abstract. The execution of scientific workflows in Grid environments imposes 
many challenges due to the dynamic nature of such environments and the 
characteristics of scientific applications. This work presents an algorithm that 
dynamically schedules tasks of workflows to Grid sites based on the 
performance of these sites when running previous jobs from the same 
workflow. The algorithm captures the dynamic characteristics of Grid 
environments without the need to probe the remote sites. We evaluated the 
algorithm running a workflow in the Open Science Grid using tweve sites. The 
results showed improvement up to 120% relative to other four usual scheduling 
strategies. 

1 Introduction 

Grids [9] are emerging as virtual platforms for high performance and integration of 
networked resources. In these environments, distributed and heterogeneous resources 
owned by independent organizations can be shared and aggregated to form a virtual 
computer. Scientific applications usually consist of numerous jobs that process and 
generate large datasets. Frequently, these components are combined generating 
complex scientific workflows. Therefore, scientific communities like physicists, 
biologists, astronomers are using the grid computing to solve their complex large-
scale problems.  

Processing scientific workflows in a Grid imposes many challenges due to the 
large number of jobs, file transfers and the storage needed to process them. The 
scheduling of a workflow focuses on mapping and managing the execution of tasks on 
shared resources that are not directly under the control of the workflow systems [23]. 
Thus, choosing the best strategy for a workflow execution in a Grid is a challenging 
research area.  

Often, a scientific workflow can be represented as a Directed Acyclic Graph 
(DAG) where the vertices represent tasks and the edges represent data dependencies. 
One alternative to process this kind of workflow is to statically pre-assign tasks to 
resources based on the information of the entire workflow. This strategy can be used 
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by a planner to optimize the execution plan for the DAG [6]. However, since a Grid 
execution environment can be very dynamic, this alternative may produce poor 
schedules because by the time the task is ready to run the resource may be 
unavailable. Besides, it is not easy to accurately predict the execution time of all 
tasks. Another scheduling approach is to perform the assignment of tasks to resources 
dynamically as soon as the task is ready to be executed. In this case, if a resource is 
not available, it will not be selected to process the task. However, many sites can be 
available to run the task, and selecting the best one can be done according to many 
alternatives, like number of processors in the site, load balance or data availability. 

This work presents an algorithm, which we name Opportunistic, which 
dynamically assigns jobs to grid sites. The algorithm adopts an observational 
approach and exploits the idea of scheduling a job to a site that will probably run it 
faster. The opportunistic algorithm takes into account the dynamic characteristics of 
Grid environments without the need to probe the remote sites. We compared the 
performance of the opportunistic algorithm with different scheduling algorithms in a 
context of a workflow execution running in a real Grid environment. We conducted 
our experiments using the Virtual Data System (VDS) [10], which defines an 
architecture to integrate data, programs, and the computations performed to produce 
data. VDS combines a virtual data catalog for representing data derivation procedures 
and derived data with a virtual data language that enables the definition of the 
workflows. VDS also provides users with two planners that schedule jobs onto the 
grid and manage their execution. Scheduling in VDS can be done according to a 
family of site selectors available for user needs. This work extends the library of site 
selectors with a new Opportunistic site selector algorithm. Our results with 
experiments in a real Grid environment suggest that the opportunistic algorithm can 
increase performance up to 120% when compared to scheduling algorithms, currently 
adopted in most systems, particularly in VDS. 

The rest of this paper is organized as follows. Section 2 discusses the related work 
that deals with grid scheduling. Section 3 describes the Virtual Data System 
architecture where the opportunistic strategy was implemented while in section 4, we 
detail the opportunistic algorithm. In section 5 we describe the experiments performed 
and in section 6 the experimental results are analyzed. Finally, section 7 concludes 
this work and points to future directions.  

2 Related Work 

Finding a single best solution for mapping workflows onto Grid resources for all 
workflow applications is difficult since applications and Grid environments can have 
different characteristics [23]. In general, scheduling workflow applications in 
distributed environments is done by the adoption of heuristics. There are many works 
in the literature addressing the benefits of the scheduling based on data locality in 
scenarios of data grids. Casanova et al. [2] propose an adaptive scheduling algorithm 
for parameter sweep applications where shared files are pre-staged strategically to 
improve reuse. Ranganathan and Foster [17, 18] evaluate a set of scheduling and 
replication algorithms and the impact of network bandwidth, user access patterns and 



data placement in the performance of job executions. The evaluation was done in a 
simulation environment and the results showed that scheduling jobs to locations 
where the input data already exists, and asynchronously replicating popular data files 
across the Grid provides good results. Cameron et al. [4, 5] also measure the effects of 
various job scheduling and data replication strategies in a simulation environment. 
Their results show benefits of scheduling taking into account also the workload in the 
computing resources. Mohamed and Epema [14] propose an algorithm to place jobs 
on clusters close to the site where the input files reside. The algorithm assumes 
knowledge about the number of idle processors and the size of the input file for 
scheduling a job.  

The workloads studied in these works consist of a set of independent jobs 
submitted from different users spread over different sites. Our work differs by 
focusing on scheduling jobs belonging to a single application, which is a workflow, 
submitted from a single user in a single site. 

Many researchers have studied scheduling strategies for mapping application 
workflows onto the grid. Ammar et al. [1] developed a framework to schedule a DAG 
in a Grid environment that makes use of advance reservation of resources and also 
considers the availability knowledge about task execution time, transfer rates, and 
available processors to generate a schedule. Their simulation results show advantages 
of unified scheduling of tasks rather than scheduling each task separately. Mandal et 
al. [13] apply in-advance static scheduling to ensure that the key computational steps 
are executed on the right resources and large scale data movement is minimized. They 
use performance estimators to schedule workflow applications. Wieczoreket et al. 
[22] compare full graph scheduling and just-in-time strategies for scheduling of 
scientific workflow in a Grid environment with high availability rate and good control 
over the resources by the scheduler. Their results show best performance for full 
graph scheduling. Deelman et al. [6, 7] can map the entire workflow to resources at 
once or portions of it. This mapping can be done before or during the workflow 
execution. Their algorithm prefers to schedule computation where data already exist. 
Additionally, users are able to specify their own scheduling algorithm or to choose 
between a random and a round robin schedule technique. Dumitrescu et al. [8] studied 
the performance execution of Blast jobs in Grid3 [11] according to several scheduling 
algorithms. In their experiments they used a framework that considered resource 
usage policies for scheduling the jobs. Their results showed that random and round-
robin algorithms achieved the best performance for medium and large workloads. 

Triana [12] allows scientists to specify their workflows which can be scheduled 
directely by the user or by the GriLab Resource Management System. In this case, the 
scheduling is done according to requirements specified for each task. Taverna [15] 
provides a set of tools to define bioinformatics workflows based on a composition of 
web services, but not much detail is given about the scheduling of tasks. 

In our work, we also deal with the problem of scheduling jobs belonging to a single 
application, which is a workflow expressed as a DAG. Like in the previous workflow 
scheduling works, the goal of the scheduling is to minimize the overall job 
completion. In our algorithm, the planning scheme is completely dynamic and based 
on an observational approach. We do not consider performance estimation of Grid 
resources, use of advance reservations or requirements specifications. The 



performance evaluation was conducted in a real Grid environment without any control 
over the resources. 

3 VDS planning architecture 

In VDS, users specify their workflows through the use of VDL [10]. The VDC 
(Virtual Data Catalog) stores the user’s workflow definition and provides the planner 
with the logical file names of the files and the name of the transformations 
(executable programs). The Replica Catalog   provides the physical name for the input 
files given their logical file names. The transformation catalog (TC) specifies how to 
invoke (executable name, location, arguments) each program. Finally, the Pool 
Configuration catalog is responsible to provide the information about the desirable 
grid sites to run the workflow. Figure 1 illustrates the VDS planner architecture.  

 

 

 

 

 

 

Fig. 1. VDS Planner architecture 

 
 
 
 
 
 
 
 
 

 

 

Fig. 2. VDS Planning mechanism 
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The planner makes use of a site selector mechanism in order to schedule each job 
of the workflow. The goal of the site selector is to choose a grid site capable to 
execute a given job. In the VDS planner, the pre-script dynamically builds a list of the 
available sites for executing each job based on the information of the Transformation 
Catalog and Pool Configuration. The Pre-script then calls the site selector mechanism 
and waits for the solution, that is, the site selected for the job execution. The solution 
returned by the site selector is passed to Dagman [3], which is responsible for 
scheduling the job into the grid.  

Figure 2 details the planner’s functionality and its interaction with a site selector. 
After receiving the identification of the site to run the job, the VDS-Planner executes 
the replica selection by querying the Replica Location Service to locate all replicas for 
each file. If there is a replica located in the selected site then this replica will be 
chosen. Otherwise, the planner will perform a third party transfer of the input files 
from the sites where they are located to the site where the job is supposed to run. 
Whenever a job ends, all input files dynamically transferred for the job execution site 
are erased in the post-processing step. 

4 The opportunistic algorithm  

Scheduling workflow tasks in Grid environments is difficult because resource 
availability often changes during workflow execution. The main idea of the 
opportunistic algorithm is to take advantage of this environment changes without 
needing to probe the remote sites. In order to implement our opportunistic algorithm 
using VDS, a few extensions were promoted in the system: we created a control 
database for logging the location and the status of the workflow jobs, and coded a site 
selector routine responsible for choosing the execution site for a job. Since the control 
database is updated by the postscript of each job, the VDS postscript code also had to 
be modified.  

 

 

 

 

 

 
 
 

Fig. 3. The opportunistic site selector architecture 

The goal of the opportunistic site selector is to select a site to run a job based on 
the performance of each site when running previously jobs of the same workflow. In 
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other words, the site selector assigns more jobs to sites that are performing better, 
according to the architecture in Figure 3. The performance is measured by the ratio 
(number of ended jobs / number of submitted jobs) at each site, as shown in the 
algorithm from Figure 4. As long as no jobs have completed, the site selector 
performs a round robin distribution between the sites. In order to keep track of the 
submissions and completions of the workflow jobs, the site selector makes use of a 
control database. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 4. The opportunistic algorithm 

Algorithm: Opportunistic 
Input: Job J to be submitted.  
Set Se {si} of availables sites informed by the planner. 
Set So {si} of sites informed by the Control Database 
ƒ1(S) → Number of jobs scheduled to site S 
ƒ2(S) → Number of jobs ended at site S 
ƒ3(max) → Site;  
ƒ4(min) → Site;  
ƒ5 → {ji} ; Set of submited jobs 
Output: Solution - Identification of the Site selected to run the job. 
Initialization: 

      flag ← 0 
      min ← high value 
      max ← low value 
      Steps: 

1. Foreach site si Є So  do 
            1.1 if si Є Se then  
          1.1.1 Ti,s ← ƒ1(si) 
                   1.1.2 if Ti,s < min then  
                            1.1.2.1 min ← Ti,s 
           1.1.3 Ti,c ← ƒ2(si)   
            1.2 if Ti,c > 0 then 
                   1.2.1  Ri ← (Ti,c / Ti,s) 
                   1.2.2  flag ← 1 
                   1.2.3 if Ri  > max then 
                           1.2.3.1  max ← Ri 

2. if flag = 1 then  
       2.1 Solution ← ƒ3(max) 

   2.2 else Solution ← ƒ4(min) 
   3.   To ← ƒ5 
   4.   if T Є To  then  
        4.1 update siteid for job T  
        4.2 else insert tuple (T, solution) 
   5.  Return Solution 



Whenever the site selector chooses a site to run a job, one record is inserted in the 
control database with the identifications of the job, the identification of the selected 
site and a status set to “submitted.” Whenever a job ends, another record with job 
identifier, site, and status set to "ended" is also added. This last insertion is done by 
the postscript of every job.  

The second component of the opportunistic approach is a queue monitor for the 
submitted jobs of the workflow. The main motivation to develop this component is 
that is very usual to have jobs submitted waiting for execution in remote queues. The 
goal of MonitQueue is to keep track of the jobs submitted by DagMan/Condor in 
order to remove those jobs that are not presenting a desired performance. In the actual 
implementation, the user must inform the maximum time a job can wait in a queue in 
an idle status. When a job reaches this time it is killed and automatically re-planned 
by Euryale. In this case, the opportunistic site selector will choose another site to run 
the job. 

5 Experiments 

Many scientific applications can be characterized as having sets of input and 
derived data that have to be processed in several steps by a set of programs. These 
batch-pipelined workloads [21] are composed of several independent pipelines and 
each pipeline contains sequential processes that communicate with the preceding and 
succeeding processes via data files.  

 
 
 
 
 
 
 
 

Fig. 5. The pipelined workflow 

We defined a pipelined workflow to evaluate a set of scheduling strategies in this 
experiment. The design of the workflow is shown in figure 5 while figure 6 depicts 
the corresponding DAG. There is an input dataset D1 with only one file which is 
input for the first and second programs in the pipeline. The first program also has as 
input file, a file belonging to dataset D2. Program P2 process the output generated by 
P1 and also has more two files as input for its processing: the file from D1 dataset and 
a file from dataset D4. The third and last program of the pipeline processes the output 
file produced by P2 and outputs a file for the dataset D6. The width of the pipeline 
was set to 100 nodes in each level, totalizing 300 jobs in the workflow. 

Currently, the VDS system provides three choices for the planners: Round-Robin, 
Random and Weighted-Linear-Random. We evaluated the Opportunistic algorithm 
against the Weighted-Linear-Random, Round-Robin, Last-Recent-Used and Data-
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Present algorithms. The last two strategies were coded for the experiments. The 
overall ideas of these algorithms are: 

1. Weighted-Linear-Random (WLR)- The execution site is selected randomly 
but sites with more processors receive more jobs to process. 

2. Round-Robin - Jobs are sent to sites in a round-robin way. Thus, the number 
of jobs assigned to each site is the same. 

3. Last-Recent-Used(LRU) - The execution site corresponds to the site where 
the last job ended. 

4. Data-Present - A job is sent to a site with the most files that it needs. If 
more than one site qualifies then a random one is chosen.  

5. Opportunistic - The execution site is selected according to the performance 
of each site. This performance is measured by dividing the number of 
concluded jobs by the number of submitted jobs at each site. While there are 
no jobs concluded, a round-robin scheduling is performed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. The DAG shape for the pipelined workflow 

Table 1 - Resources available by OSG sites 

Site Processors 
UIOWA_OSG_PROD 6 

HAMPTONU 8 
PURDUE_PHYSICS 63 
UFLORIDA_IHEPA 70 

UWMADISON 83 
UC_ATLAS 110 
UTA_DPCC 148 

UERJ_HEPGRID 160 
CIT_T2 224 

UWMILWAUKEE 304 
OSG_LIGO_PSU 314 
USCMS_FNAL 989 
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We conducted the experiments using twelve sites from the Open Science Grid [16]. 
Table 1 shows a snapshot of the total resources available at each site. In order to not 
interfere with the production, we defined all workflow jobs as sleep jobs. We used 
two different machines at University of Chicago for running Dagman and the replica 
catalog respectively. A third machine at the same site was used to store all the input 
files for the workflow. Table 2 shows the average execution time and transfer time for 
each type of job and file of the workflow. The size of all input and output files is one 
megabyte.  

Table 2 - Average time in seconds for data transfer and execution according to the type of the 
workflow level 

 P1 P2 P3 
Number 100 100 100 

Transfer time 17 27 13 
Execution time 300 120 60 

6 Results 

We executed the workflow twenty times for each scheduling strategy, totalizing 
30,000 job executions. Figure 7 presents the performance results for all algorithms. 
As can be noted, the performance of the five algorithms is almost the same during the 
execution of the first hundred jobs of the workflow. Opportunistic, Last-Recent-Used 
and Round-Robin algorithms adopt the same scheduling strategy while there is no job 
concluded. The Data-Present algorithm uses a strategy similar to Weighted-Linear-
Random while there is no site with the needed input files for the job. Since there is no 
dependencies among the jobs in the first level of the workflow, Condor/DagMan can 
submit them as soon as the pre-script of each job is finished. The time to transfer the 
input files is very low and consequently the pre-processing for each job is very fast 
causing most jobs in this level to be scheduled before any job had finished. As soon as 
the jobs in the first and second levels begin to finish, Opportunistic, Last-Recent-Used 
and Data-Present start to schedule according different approaches.  Opportunistic and 
Last-Recent-Used use their observational characteristics while Data-Present takes 
advantage of data locality. In the first case, the scheduling starts to be done based on 
the ratio (jobs concluded/jobs submitted) while Last-Recent-Used starts to schedule to 
the site that finished the processing of the last job. 

The Opportunistic algorithm benefits from the dynamic aspects of the Grid 
environment. If a site happens to perform poorly, then the number of jobs assigned to 
this site decreases. Similarly, if a site process jobs quickly, then more jobs are 
scheduled to that site.  

The Last-Recent-Used algorithm may not present a good performance when a job 
is scheduled to a site and have to wait a long period of time in the remote queue. 
When this happens, the next job in the workflow will probably show the same 
performance problem because it must be scheduled to run in the same site. This kind 



of problem is avoided by the Opportunistic algorithm because a job can be cancelled 
by Moniqueue if it was not started after a determined period of time.  

Since the size of the files generated during the execution is small, the time to 
transfer these files does not impact the performance and does not bring benefits to 
Data-Present algorithm. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Execution time by algorithm 

 
 
 
 
  
 
 
 
 
 
 
 

           Fig. 8. Basic execution statistics                                   Fig. 9. Speedup by algorithms 

Round-Robin provides a good load balance among the sites but since the 
performance varies among sites, scheduling the same number of jobs to each site is 
not beneficial. Weighted-Linear-Random does not show a good performance because 
scheduling more jobs to sites with more resources does not guarantee better results 
since jobs can have to wait in the remote queues. It seems that this kind of strategy is 
more indicated to Grid environment where resources can be reserved for the entire 
execution of the workflow. 
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Figure 8 shows a set of few basic statistics about the workflow runnings. As can be 
observed, the minimum execution time is almost the same for all algorithms. This 
occurs because eventually all sites may be presenting a good performance due to 
having processing resources available by the time of the execution. However, the 
most usual behavior is to have sites presenting different performance as the workflow 
is being processed. Consequently, the median, average and maximum execution time 
differ according to the execution strategy.  

Figure 9 shows the speedup of the five algorithms. The execution of the workflow 
with the opportunistic algorithm was approximately twenty five times faster than 
running in a single machine. The speedup achieved by the Opportunistic algorithm 
was more than 150% higher than the other strategies. 

7 Conclusions and Future Work 

We have proposed a new “opportunistic” algorithm for scheduling jobs in grid 
environments, and compared its performance with other algorithms. In particular, we 
analyzed the performance with a very common workflow pattern, a pipeline of 
programs. The results showed that the Opportunistic algorithm provided superior 
performance when compared to other four VDS algorithms for scheduling workflows 
jobs. The performance improvement is achieved as a consequence of the 
observational approach implemented by the algorithm. This approach exploits the 
idea of scheduling jobs for sites that are presenting good response times and to cancel 
jobs that are not being executed after a period of time. The algorithm is not aware of 
sites capabilities and does not need to collect data from remote sites being easy to 
implement and can be used by other workflow engines. 

We intend to perform more comparative experiments with other scheduling 
algorithms to confirm the efficiency of the Opportunistic algorithm. We also intend to 
study the performance of the algorithm when dealing with other workflow patterns 
and sizes, and to promote extensions in order to analyze the impact of dealing with 
different sizes of historical data to compute a site's value. 
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