
Final Report on NSF SI2-SSE Award 1148443

Enhancement and Support of Swift Parallel Scripting

PI Name: Michael Wilde

Recipient Organization: University of Chicago

Project/Grant Period: 04/01/2012 - 03/31/2015

Period of this report: 04/01/2014 - 9/30/2015

Reformatted report based on NSF final project report submitted October 5, 2015.

Report Contents

1	
 Report	
 Overview	
 ..	
 1	

2	
 Major	
 goals	
 of	
 the	
 project	
 ..	
 2	

3	
 Major	
 Activities	
 ...	
 2	

3.1	
 Usability	
 improvements	
 to	
 Swift	
 ...	
 2	

3.1.1	
 Swift/K	
 improvements	
 ...	
 3	

3.1.2	
 Swift/T	
 Improvements	
 ...	
 3	

3.1.3	
 Additional	
 Development	
 Activities	
 ...	
 4	

3.2	
 Documentation	
 and	
 Promotion/Engagement	
 ..	
 5	

4	
 Summary	
 of	
 Progress	
 Against	
 Specific	
 Project	
 Goals	
 ...	
 5	

5	
 User	
 Engagement	
 within	
 Science	
 and	
 Engineering	
 Communities	
 ..	
 7	

6	
 Progress	
 against	
 target	
 metrics	
 ...	
 9	

7	
 Training	
 and	
 professional	
 development	
 provided	
 by	
 the	
 project	
 ...	
 10	

8	
 Outreach	
 Tutorials,	
 Talks,	
 Meetings,	
 Poster	
 Sessions	
 ...	
 10	

9	
 Publications	
 (April	
 2014	
 –	
 October	
 2015)	
 ...	
 12	

10	
 Impacts	
 ...	
 13	

1 Report Overview

The goal of this project and the Swift team is to enhance, promote and support the Swift parallel
scripting language and its application to increase productivity for performing workflow-style “many task”
computing efforts in science and engineering.

This report covers the third (and final) year of this three year SI2-SSE project, and subsequent activities
funded by other sources.

The project budget, which was weighted toward the first two projects years, allocated approximately
0.6 FTE to the third and final project year (this reporting period). Hence project activities in this
period have focused on user engagement and support with only minimal sustaining development
activities.

Support from additional sources was leveraged to both sustain Swift and to support user engagements.
These sources include the NSF QuarkNet project, UChicago Computation Institute general funds, the
Argonne Leadership Computing Facility, Argonne LDRD funds, the DOE ASCR project “AIMES”,
efforts contributed by the commercial architecture firm Skidmore Owings Merrill, and efforts
contributed by Parallel.Works LLC, a startup supported by the UChicago Innovation Fund.

2 Major goals of the project

The major goals of the project are:

• Engage hands-on with important and strategic users/communities on applying Swift, to identify
gaps and prioritize improvement opportunities.

• Propose and conduct tutorials and BoF sessions at important scientific computing conferences

(SC, HPDC, e- Science) as well as domain-specific science conferences and meetings.

• Aggressively promote Swift through tutorials and talks within the UChicago community,
Midwestern campuses, and beyond.

• Regularly publish both computer science and application papers that highlight Swift's benefits

and accomplishments.

• Conduct assessment of user needs in weekly Swift development team meetings to determine
development and support actions and priorities.

• Adapt the Swift programming model to specific programming language communities of broad

importance to science: Python, R, Octave, and MATLAB, and promote its use within those
communities.

• Create a vibrant online user community from which we distill user needs, continuously gathering
and tracking requirements and issues.

• Maintain the Swift product roadmap in an open manner, and solicit both continuous and focused

user input on it.

3 Major Activities
	

Progress against the goals for this period that were listed in the prior reporting period are listed briefly
here and detailed in subsequent sections:

3.1 Usability improvements to Swift

The source code for the two Swift variants, Swift/K (classic portable Java-based) and Swift/T (high
performance MPI-based) have been consolidated under two repositories within a single GitHub
organization, https://github.com/swift-lang . This will encourage broader community engagement in
Swift development and support, by making the ability to commit code changes globally accessible, and
not dependent on obtaining UChicago logins. Usability improvements in each variant are described
below.
	

3.1.1 Swift/K improvements

Four Swift/K versions were developed (and three released as of this date) in this period, with the
following highlights:

 0.96

• Support for AWS EC2 and Google Compute engine execution providers was added.
• Job cancellation for Swift workers (“coasters”) MPI support in Swift workers
• New standard function library, harmonized with Swift/T, and supporting - function overloading
• Improved multi-client support in standalone coaster service with both per-client settings and shared

global settings modes
• Structure initializers and sparse array initializers (e.g. array = {"key1": "value1", ...} Syntactic

improvements to Swift/K nested if-then-else statements (more “C like”) Moved from UChicago
SVN repo to github, to enable public write access to committers of any affiliation.

• New unified, user-friendly configuration format that defines both sites, runtime properties and
application locations and search paths.

• Added tool displays and replays performance information of Swift runs from logs. Added a shell
interface for easy creation/customization of execution providers, to enable flexible cloud resource
usage, and make it easier for users who need non- standard local scheduler settings to use Swift.

0.96.1

• Several bugs were fixed in this revision.
• Improved provenance support from UFRJ researchers (Rio, Brazil) was integrated

0.96.2

• Support for the XSEDE Stampede resource was added, including the ability to run MPI apps
within a Swift workflow. Additional bug fixes were made.

0.97 (In alpha test by users; not yet released)

• Includes significant memory and speed performance enhancements, and more flexible app task
description capabilities (by allowing complete scripts to be specified in-line). Mapping of single
files to variables has been made simpler, more concise and more flexible by allowing arbitrary
expressions in the default mapping construct.

3.1.2 Swift/T Improvements

Swift/T’s build process was further enhanced and simplified; its inter-language external function and
application calling mechanism were further enhanced; support for more cluster types (e.g SLURM) were
added. Work has been started to add distributed data management capabilities to Swift/T via the Swift
worker service. The built-in function library was further enhanced, and functions were added to provide
more control over the ability to place tasks close to their input data objects.

Four Swift/T versions were released in this period, with the following highlights:

0.5.1

• Static build capability for significant performance improvement with high node counts
• Minor output fix

0.6.1

• Checkpointing of swift-t runs for recovery after run failures
• New data object container features, including faster and more flexible arrays Pushed data

dependencies into ADLB - eliminates the separate Turbine “rule engine” processors
• (Reduces process overhead of Turbine engines) Support for Julia as an embedded scripting

language

0.7.0

• Support for remote execution via Coasters
• New “swift-t” tool combines “stc” (complier) and “turbine” (executor) commands for single

command compile-and-run
• New “soft” node targeting feature directs app calls to specific nodes for data- intensive scripting

applications
• Ability to retry failing app function invocations
• More flexible standard output options (TURBINE_OUTPUT) STC compiler output is now in a

*.tic file by default

0.8.0

• Open code syntax in Swift: main{} function is no longer required Advanced targeting modes for
data intensive applications

• New string format operator
• Initial support for Swift/* standard library (language convergence with Swift/K) MPI variable

sized leaf tasks (capabilities of launching parallel leaf tasks with dynamically settable process
counts) on Blue Gene/Q.

3.1.3 Additional Development Activities
	

In	
 addition	
 to	
 these	
 releases,	
 the	
 following	
 activities	
 were	
 conducted:	

• Code	
 coverage	
 for	
 the	
 Swift/T	
 test	
 suite	
 was	
 analyzed	
 (for	
 the	
 stc	
 compiler):	
 check	
 to	
 see	

how	
 much	
 of	
 the	
 STC	
 codebase	
 the	
 test	
 suite	
 actually	
 exercised.	
 The	
 results	
 showed	
 over	

80%	
 coverage,	
 and	
 that	
 much	
 of	
 the	
 remainder	
 was	
 disabled	
 trace	
 level	
 logging	
 statements.	

Some	
 browsable	
 sample	
 results	
 are	
 here:	

http://people.cs.uchicago.edu/~tga/stc-­‐test-­‐coverage/	
 Tool	
 used:	

http://www.eclemma.org/jacoco/	

• Mechanisms	
 were	
 added	
 to	
 Swift/T	
 to	
 enable	
 easier	
 invocation	
 of	
 application	
 codes	
 by	

integrating	
 entire	
 applications	
 as	
 in	
 memory	
 functions	
 called	
 without	
 using	
 fork/exec,	
 to	

achieve	
 high	
 performance	
 on	
 petascale	
 platforms.	
 This	
 technique	
 is	
 referred	
 to	
 as	
 “Main	

Wrapping”	
 because	
 it	
 allows	
 entire	
 apps	
 to	
 be	
 invoked	
 through	
 their	
 command	
 line	

interface	
 (ie,	
 through	
 the	
 function	
 call	
 “main(argc,argv)”	
 but	
 without	
 spawning	
 a	
 new	

fork/exec	
 process.	

• The	
 integration	
 of	
 Swift/T	
 with	
 the	
 flexible	
 Swift	
 resource	
 allocation	
 service	
 (the	
 worker	

service,	
 internally	
 referred	
 to	
 as	
 “coasters”)	
 was	
 further	
 enhanced	
 with	
 flexible	

configuration	
 mechanisms	
 to	
 specify	
 resource	
 allocation	
 units.	
 This	
 is	
 nearing	
 production	

readiness,	
 and	
 will	
 bring	
 the	
 project	
 closer	
 to	
 having	
 a	
 single	
 Swift	
 implementation	

(effectively	
 merging	
 Swift/K	
 and	
 Swift/T	
 releases	
 into	
 a	
 single	
 unified	
 system	
 with	
 reduced	

support	
 costs).	

	

3.2 Documentation and Promotion/Engagement
	

Enhanced	
 Swift	
 documentation	
 with	
 a	
 focus	
 on	
 self-­‐paced	
 tutorial	
 material.	

The	
 tutorials	
 were	
 refactored	
 to	
 separate	
 core	
 language	
 and	
 distributed	
 programming	
 methods	

from	
 site-­‐specific	
 issues	
 related	
 to	
 particular	
 cluster	
 schedulers	
 or	
 data	
 access	
 conventions.	
 This	

improved	
 version	
 was	
 used	
 at	
 the	
 XSEDE	
 2015	
 conference.	
 A	
 major	
 new	
 user	
 guide	
 rewrite	
 has	

been	
 completed.	
 This	
 revised	
 guide	
 improves	
 the	
 manner	
 in	
 which	
 the	
 language	
 is	
 explained	
 for	

new	
 users,	
 and	
 provides	
 a	
 more	
 complete	
 and	
 better-­‐organized	
 working	
 reference	
 to	
 the	
 language’s	

details	
 for	
 experienced	
 users.	
 The	
 guide	
 was	
 also	
 updated	
 to	
 match	
 the	
 newest	
 improvements	
 in	

the	
 Swift	
 configuration	
 process.	

Expanded	
 promotional	
 and	
 engagement	
 focus	
 to	
 broader	
 reach	
 activities	
 that	
 can	
 more	
 rapidly	

expand	
 the	
 user	
 community.	

Swift	
 was	
 increasingly	
 promoted	
 within	
 the	
 extreme	
 scale	
 community.	
 Evidence	
 that	
 its	
 being	

increasingly	
 exposed	
 is	
 seen	
 in	
 the	
 fact	
 that	
 national	
 and	
 international	
 collaborations	
 are	

increasingly	
 contacting	
 us	
 and	
 evaluating	
 Swift,	
 including	
 Caltech’s	
 materials	
 science	
 program	
 and	

their	
 collaboration	
 with	
 the	
 University	
 of	
 Washington	
 and	
 Columbia	
 University,	
 the	
 UK-­‐based	

Genome	
 Analysis	
 Center	
 (TGAC),	
 and	
 the	
 international	
 Square	
 Kilometer	
 Array	
 project	
 (SKA).	
 We	

will	
 publish	
 an	
 open	
 development	
 roadmap	
 on	
 the	
 Swift	
 website	
 to	
 further	
 engage	
 a	
 broader	

community	
 of	
 users	
 and	
 contributors.	

	

4 Summary of Progress Against Specific Project Goals
	

The	
 overall	
 project	
 goal	
 is	
 to	
 enhance	
 Swift	
 usability	
 and	
 performance,	
 engage	
 with	
 user	

communities,	
 and	
 aid	
 them	
 in	
 applying	
 Swift	
 to	
 meet	
 workflow-­‐related	
 computing	
 needs	
 in	
 science	

and	
 engineering.	

	

GOAL: Engage hands-on with important and strategic users/communities on applying Swift, to identify
gaps and prioritize improvement opportunities.

RESULT: Engaging with and supporting users has been our major activity in the third and final year of
this project. These engagements are summarized below.

GOAL: Create and maintain effective "starter kits" that attract prospective users to quickly try Swift and
experience its benefits and ease of use.

RESULT: Self-paced tutorials were developed catering to different user communities based on domain
science, execution platform and user expertise. The tutorial package (http://swift-lang.org/swift-
tutorial/doc/tutorial.html) was significantly improved, and runs on numerous local campus systems at
UChicago and Argonne, Amazon and other cloud resources, XSEDE, OSG, as well as on Cray systems.
A separate tutorial has been developed for the IBM Blue Gene Q systems.

The Web-based “Try Swift" interface (http://swift-lang.org/tryswift) gives users the ability to try several
tutorial scripts on a small set of virtual machines, and experiment with Swift code.

GOAL: Regularly publish both computer science and application papers that highlight Swift's benefits
and accomplishments.

RESULT: Posters, papers, and tutorials were held at various regional, national and international venues.

The project has a good publication record, as reported on the Swift Web site and in a later section of this
report.

GOAL: Adapt the Swift programming model to specific programming language communities of broad
importance to science: Python, R, Octave, and MATLAB, and promote its use within those communities.

RESULT: Swift is able to run “leaf function” scripts in all of these languages, many of which are used
extensive in neuroscience workflows (MATLAB), and in the scattering science user community (Python
and MATLAB), and earth systems science (Octave). The newer HPC-focused Swift/T release has the
ability to call in-memory functions written in Python, Tcl, R and Julia. The ability for Swift/K to run on
Hadoop was implemented as an experimental facility for the UChicago Knowledge Lab to use for large-
scale text analysis and data mining.

GOAL: Conduct assessment of user needs in weekly Swift development team meetings to determine
development and support actions and priorities.

RESULT: Regular weekly Swift group meetings have been held on Fridays at 2PM Central, for most of
the duration of this project. The entire group attends this meeting on a regular basis, typically from
multiple sites. This meeting has become an effective part of group culture. The meeting has held
approximately 85% of the time on a weekly basis. User needs and open trouble tickets are addressed
between experts in different Swift subsystems. New feature development plans are discussed.
Brainstorming of new product directions often takes place at these meetings.

GOAL: Create a vibrant online user community from which we distill user needs, continuously gathering
and tracking requirements and issues.

RESULT: A mailing list that enables discussion between the Swift group and users community is
gradually gaining in usage, but many Swift users still communicated with the group through direct private
conversations and through a trouble-ticket system that we are deprecating in order to maximize discussion
on the community-wide forums.

We have moved the Swift source code for both Swift/K and Swift/T to GitHub repositories under the
swift-lang GitHub organization, and are planning to consolidate the Swift/T and Swift/K community
communication lists, leveraging GitHub as an accessible and open platform for international community
engagement.

GOAL: Maintain the Swift product roadmap in an open manner, and solicit both continuous and focused
user input on it.

RESULT: We have moved the Swift email lists from their ci.uchicago.eu domain to swift-lang.org to
further encourage community participation. The Swift/T project has from its inception used an open
discussion forum (Google Issue Tracker at https://code.google.com/archive/p/exm-issues/issues) for
feature design discussion and implementation.

We plan to post a comprehensive product development and evolution roadmap for community feedback
and engagement by Nov 2015.

GOAL: Propose and conduct tutorials and BoF sessions at important scientific computing conferences
(SC, HPDC, e-Science) as well as domain-specific science conferences and meetings. Aggressively
promote Swift through tutorials and talks within the UChicago community, Midwestern campuses, and
beyond.

RESULT: Thirty four outreach talks and meetings, poster sessions, and tutorials on Swift and related
scientific workflow topics have been presented and/or held, as listed below.

	

5 User Engagement within Science and Engineering Communities
	

In this period, the Swift user base has expanded and many new regular users were engaged, 25 of which
are listed here.
	

1) The UChicago Knowledge Lab (KL) seeks to develop a refined picture of the social and material
organization underlying the innovations contained in the academic literature. Its research benefits, from
Swift's large-scale parallelization, which is used by six KL researchers.

KL developed Swift libraries for text analysis methods including n-gram counting, TF*IDF rankings and
K-L divergence scores. Swift’s ability to run these over Hadoop enabled KL to take advantage of a large
pool of resources with low contention, without reprogramming scripts to run directly on Hadoop. One
summer student mined 2.5 TB of Wikipedia history using AWS spot instances, with only a few weeks of
effort. Swift enabled KL researchers to run analyses with varying parameters on multiple folds of a
dataset of 8.2 million biomedical abstracts. KL leveraged Swift's ability to run on different environments
without changing scripts, including OSG Connect. KL NSF grants that used Swift: 1158803, 1422902,
0915730.

2) The multidisciplinary NSF-supported “Center for Robust Decision Making on Climate and Energy
Policy” (RDCEP) performs climate-energy-economics modeling with climate and economic scientists
from eight institutions. This collaboration has employed Swift over the past three years to execute a
growing set of models of agricultural, economics, climate and energy-related factors affecting the global
food supply. RDCEP has published over eleven journal and conference papers from 2011-2015 based on
the results from Swift-driven computations (http://www.rdcep.org/publications).

3) For the NSF project "Understanding the Consequences of Water-Use Decisions in a Dynamic
Environment" (award 1114851, University of New Hampshire), C. H. Chow of the Agent-based
Modeling Group developed a parallel Repast agent-based model using Swift to simulate the effect of
social and organizational factors on water use in Arizona. For the NSF project "RAPID: Designing Ebola
Interventions for Large Urban Areas through Agent-Based Modeling and Network Analysis" (award
1516428, UChicago), the ABM Group is using Swift/T to model the behavior of global epidemics. This
is a large-scale model optimization workflow using 16K-64K cores, and involving J. Ozik, N. Collier,
C.H. Chow, J. Wozniak, and NSF REU student J. Burge).

4) T. D. Schiebe and colleagues at the Environmental Molecular Sciences Laboratory use Swift in hybrid
multi-scale workflows to model subsurface materials flows with reactive transport. They simulate
multiphase flow, solute and energy transport, geochemical reactions, geomechanical effects, and multi-
organism microbial communities. This research, supported by DOE and NSF, was reported in ICCS 2015
and Groundwater Vol. 53 (NGWA.org).

5) Researchers K. Takahashi and K. Balasubramanian in the UChicago Neuroscience lab of N.
Hatsopolous have used Swift extensively for neurophysical animal studies by analyzing EEG data from
experiments, driving MATLAB workflows with Swift on the UChicago Cray Beagle system. From 2011
through 2015, this research, supported by NSF and NIH, has published five journal papers and a
conference abstract, and presented eleven talks, based on Swift computations.

6) The Swift team engaged with two research groups in scattering science at the Argonne Advanced
Photon Source (APS). One group is studying crystal structure via diffuse scattering. Another group is
studying metal grain structure and defect behavior through high energy diffraction microscopy (HEDM).
Swift workflows are used to perform HEDM near-field and far-field analysis at the beamline, as well as
speeding post-processing for tomography and powder diffraction. This benefits NSF researchers such as
the labs of R. Suter and A. Rollet from CMU.

7) The labs of J. De Pablo of UChicago's Institute for Molecular Engineering and J. Whitmer of the

Chemical Engineering, Notre Dame are using Swift/T to explore advanced sampling methods for
molecular dynamics simulations, driving LAMMPS from Swift/T. Their work, which involves techniques
such as configurational bias, expanded ensembles, parallel tempering, density-of-states sampling, flux-
tempered metadynamics, and radial basis function sampling, is supported in part by NSF and DOE.

8) J. Lin and O. Heinonen of Caltech evaluated Swift to perform ensembles of electronic structure
computations for ab initio molecular dynamics. This exploratory work led the way to a proposed NSF
S2I2 collaboration between Caltech, UWashington, and Columbia University that will use Swift as the
basis for a collaboration-wide workflow framework in materials science.

9) G. Gopalakrishnan (U. Utah) and M. Burtscher (Texas State) evaluated Swift for use in an NSF-
supported XPS grant (1438963, 1439002) exploring reliability in extreme-scale programming
models. http://synergy.cs.vt.edu/2015-nsf-xps-workshop/posters/Ganesh_Gopalakrishnan_56-XPS-PI-
Meeting.pdf

10) The South Korean Institute of Science and Technology Information (KISTI) is using Swift to enable
their “High Throughput Computing as a Service” system (HTCaaS) to run over their distributed national
HPC infrastructure. KISTI has Integrated Swift with HTCaaS, which acts as a task distributor and
manager for large numbers of tasks over highly distributed computing infrastructures (multiple sites
spread across S. Korea, much like a smaller-scale Open Science Grid).

11) The Exascale Co-Design center for Materials in Extreme Environments (ExMatEx) uses Swift/T to
implement their focal applications in the area of task-based adaptive sampling for scale-bridging materials
simulation. In this work, the constitutive response of a coarse-scale material volume element is obtained
from dynamically spawned fine-scale simulations rather than from a closed-form analytic or pre-
computed model. Swift will be used to apply this method to a new Task-based Scale-Bridging Code on
the Trinity supercomputer.

12) A. Gel of the National Energy technology laboratory is using Swift to execute large-scale uncertainty-
quantification studies of coal gasification plant simulations of transient reactive flows, on Blue Gene/Q
and Cray XE and XC systems.

13) T. A. Binkowski of UChicago and the Center for Structural Genomics of Infectious Diseases used
Swift on Blue Gene/Q to run large-scale runs of the Rosetta application to perform flexible peptide
docking.

14) A materials science team at Argonne/UChicago/Northwestern led by O. Heinonen and P. Zapol is
using Swift to run a workflow that ties together molecular dynamics simulations with electronic structure
calculations into a massively parallel multi-scale computational framework.

15) S. Som of the Center for Transportation Research is using Swift to run advanced engine simulations
with sensitivity analysis and identify important variables influencing particular engine performance
targets. These workflows perform large-scale uncertainty quantification combustion engines models on
the Blue Gene/Q. A Swift framework is being constructed to execute a 60M-hour UQ modeling
campaign.

16) Swift was used to analyze large-scale next-generation sequencing datasets for the Institute for
Genomics and Systems Biology (J. Pitt, K. White). The “SwiftSeq” pipeline runs at unprecedented scale
(over 5M CPU hours and often at 10K+ cores in parallel) on Cray and cloud systems, and will be made
broadly available. (http://beagle.ci.uchicago.edu/science-at-
beagle/#health1 and http://beagle.ci.uchicago.edu/files/2014/05/may_newsletter_2014.pdf)

17) The international architecture firm Skidmore Owings Merrill (SOM) expanded its use of Swift in
building energy modeling and urban planning studies, in collaboration with the UChicago Urban Center
for Computation and Data (UrbanCCD).

18) M. Hutchinson of UChicago is performing spectrally converged direct numerical simulations of the

Rayleigh-Taylor instability in turbulent flows, in a project led by R. Rosner, using Swift/K on the Blue
Gene/Q at up to 512K cores. Swift conveniently scripts multi-week workflows with checkpoint
capabilities, in a manner that was awkward and complex with ad-hoc shell and Python scripts. It runs
workflows that coordinate BG/Q simulation with an external analysis cluster.

19) M. Mookerji, Cornell Geosciences, is using Swift to explore high pressure behavior of Fe3S using
VASP, for modeling mineral transitions in planetary cores. An abstract has been submitted to the
American Geophysical Union Conference Dec. 2015.

20) At The Genome Analysis Centre (TGAC), Norwich, UK, T. Stitt is applying Swift/T to sequence
alignment task farming.

21) A. Mazurie of Montana State University is using Swift for bioinformatics workflows, and is
evaluating the use of Swift as a classroom tool for teaching parallel programming.

22) The Swift team engaged with IIT CS researchers to provide performance results for their HPDC 2015
poster “Benchmarking the State-of-the-art Runtime Systems of Many-Task Computing, Ke Wang and
Ioan Raicu, Illinois Institute of Technology). Swift was the top in performance among the four measured
systems, which included Charm++.

23) G. Bronevetsky of LLNL (now at Google), used Swift to model failure modes in extreme-scale
parallel applications and programming models.

24) Argonne Applied Math group scientist V. Zavala of the MCS division is using Swift to manage
workflows within the Galaxy portal for power grid optimization problems expressed using JuMP, the
Julia Mathematical Programming language.

25) The NERSC scientific data management team (S. Choleas, M. Prabhat) adopted Swift as a supported
workflow solution for its petascale Cray systems Edison, Hopper, and the future
Cori. https://www.nersc.gov/users/data-analytics/workflow-tools and https://www.nersc.gov/users/data-
analytics/workflow-tools/swift/

	

	

6 Progress against target metrics
	

For	
 the	
 metrics	
 that	
 were	
 proposed	
 in	
 the	
 original	
 2011	
 proposal	
 and	
 subsequent	
 award,	
 we	
 report	

the	
 following:	

	

Number	
 of	
 communities	
 actively	
 using	
 Swift	
 to	
 derive	
 science	
 results:	
 At	
 least	
 20	
 active	

communities	
 as	
 of	
 this	
 report.	

	

Number	
 of	
 individuals	
 running	
 Swift:	
 in	
 the	
 period	
 8/2014	
 –	
 6/2015,	
 we	
 observed	
 >	
 2400	
 unique	

swift	
 users,	
 based	
 on	
 IP	
 address	
 and	
 domain	
 name.	
 These	
 users	
 ran	
 >	
 20,000	
 scripts,	
 and	
 >	
 7500	

scripts	
 of	
 over	
 5	
 minutes	
 duration.	

	

Scientific	
 publications	
 based	
 on	
 Swift	
 computations:	
 For	
 the	
 projects	
 reported	
 here	
 and	
 in	
 prior	

reports,	
 we	
 are	
 aware	
 of	
 the	
 following	
 publications	
 based	
 on	
 work	
 that	
 utilized	
 Swift:	
 11	

publications	
 from	
 the	
 RDCEP	
 project,	
 5	
 publications	
 from	
 the	
 Hatsopolous	
 neuroscience	
 Lab,	
 4	

publications	
 from	
 the	
 Sosnick/Freed	
 Biophysics	
 Lab,	
 1	
 publication	
 from	
 the	
 Voth/Dinner	
 chemistry	

Lab,	
 5	
 publications	
 from	
 the	
 Reichman	
 chemistry	
 Lab,	
 2	
 publications	
 from	
 the	
 Agent	
 Based	

Modeling	
 Group,	
 3	
 publications	
 from	
 the	
 Zapol/Heinonen	
 materials	
 science	
 team,	
 4	

publications/posters/talks	
 from	
 the	
 Institute	
 for	
 Genomics	
 and	
 Systems	
 Biology,	
 1	
 publication	
 from	

the	
 Schulten	
 biophysics	
 Lab,	
 1	
 publication	
 submitted	
 by	
 Mookerjee	
 (Cornell	
 planetary	
 science),	
 3	

publications	
 from	
 the	
 Environmental	
 Molecular	
 Ssciences	
 Lab,	
 2	
 publications	
 from	
 NCAR	
 and	
 the	

ParVis	
 parallel	
 visualization	
 project,	
 1	
 publication	
 by	
 SOM	
 from	
 the	
 Urban	
 Center	
 for	
 Computation	

and	
 Data,	
 5	
 publications	
 by	
 UFRJ	
 (Brazil),	
 3	
 publications	
 pending	
 by	
 APS	
 users	
 in	
 high	
 energy	

diffraction	
 microscopy.	
 We	
 are	
 uncertain	
 of	
 publications	
 pending	
 or	
 published	
 by	
 the	
 Knowledge	

Lab,	
 but	
 suspect	
 that	
 several	
 have	
 been	
 published	
 and/or	
 submitted.	

	

7 Training and professional development provided by the project
T. Armstrong (UChicago CS PhD student) played a leading role in Swift development, focusing on
Swift/T and extreme scalability. Armstrong completed his Ph.D, in 6/2015 and continues to participate in
the Swift project from his new position at Cloudera. His dissertation comprises a detailed design
description, rationale, and performance evaluation of Swift/T. His work was published at SC14 and in an
upcoming book chapters in a new MIT press book on parallel programming models.

Yangxinye Yang (UChicago, CS undergraduate, female) has continued to engage with the Swift team to
enhance and develop Swift configuration capabilities.

Peter Vilter of UChicago did his undergraduate thesis in part on Swift, developing a visual programming
model for Swift’s style of parallel functional dataflow programming:

https://docs.google.com/presentation/d/19oM5iH6eHpxGSPq8d3NrCeqqdNWBx45QPAPJh2bOt80/edit#
slide=id.p

For an IIT computer science class in cloud computing (CS553) – students received a lecture on Swift and
completed a programming problem on Amazon EC2 using Swift.
http://www.cs.iit.edu/~iraicu/teaching/CS553-F14/CS553-F14_syllabus.pdf

The Swift team hosted 4 REU students in 2015. These students, three men and one woman, worked on
Swift projects that include development of a Swift interpreter (“REPL-mode” interactivity, by B.Subei);
integration of the Fusion-FS filesystem for big-data processing (M. Dupres); refinement of the Swift/T
support for flexible resource allocation and remote data management (J. Taylor); and large-scale HPC
workflows to perform agent-based modeling of global epidemics (J. Burge).

M. Wilde presented a hands-on training session on Swift at the XSEDE 2015 conference as part of a short
class on XSEDE workflow techniques that included Swift, MakeFlow and Pegasus.

The Swift team participated in the Argonne Training Program for Extreme Scale Computing in Aug.
2013, 2014, and 2015, presenting two lectures on Swift and scientific workflow at supercomputer scales
to over 60 students, with hands-on exercises. For the 2015 class, M. Wilde presented general Swift
concepts, and J. Wozniak covered Swift/T and provided hands-on exercises.

Three high school summer students working at the UChicago Knowledge Lab in June-Sep 2015 have
used Swift to perform text analysis workflows, and have become enthusiastic members of the Swift user
community, developing useful KL data analysis studies.

8 Outreach Tutorials, Talks, Meetings, Poster Sessions

1. UChicago	
 Faculty	
 Technology	
 Day,	
 Swift	
 Poster,	
 M.	
 Wilde,	
 2014.0416	

2. “Swift:	
 a	
 scientist’s	
 gateway	
 to	
 campus	
 clusters,	
 grids	
 and	
 supercomputers”,	
 M.	
 Wilde,	

XSEDE	
 Workflow	
 Symposium	
 Presentation	
 (hosted	
 by	
 Gateway	
 community)	
 2014.0425	

3. Lecture	
 on	
 Swift	
 and	
 parallel	
 dataflow	
 programming	
 to	
 UChicago	
 Computer	
 Science	
 course,	

“Data-­‐intensive	
 Computing	
 Systems”	
 (Andrew	
 Chien,	
 professor),	
 M.	
 Wilde.	
 2014.0506	

4. “GeMTC	
 and	
 Swift:	
 Implicitly-­‐parallel	
 functional	
 dataflow	
 for	
 productive	
 hybrid	

programming	
 on	
 Blue	
 Waters”.	
 	
 M.	
 Wilde,	
 I.	
 Raicu.	
 Blue	
 Waters	
 Symposium,	
 Urbana,	
 IL	

2014.0514	

5. “Swift:	
 implicitly	
 parallel	
 programming	
 from	
 multicore	
 to	
 petascale”,	
 M.	
 Wilde,	
 Greater	

Chicago	
 Area	
 Systems	
 Research	
 Workshop	
 (GCASR),	
 2014.0519	

6. Talk	
 on	
 Swift	
 and	
 Provenance	
 for	
 Information	
 intensive	
 research	
 initiatives	
 at	
 the	

University	
 of	
 Chicago,	
 Panel,	
 Information,	
 Interaction,	
 and	
 Influence	
 University	
 of	

Chicago/Digital	
 Science	
 Workshop	
 on	
 Research	
 Information	
 Technologies	
 and	
 their	
 Role	
 in	

Advancing	
 Science.	
 2014.0520	

7. “Towards	
 Dynamic	
 Dataflow	
 Composition	
 for	
 Extreme-­‐Scale	
 Applications	
 with	

Heterogeneous	
 Tasks”,	
 T.	
 Armstrong,	
 Joint	
 Lab	
 for	
 Extreme	
 Scale	
 Computing,	
 Nice,	
 France.	

2014.0609.	

8. “Case	
 Studies	
 in	
 Big	
 Data	
 and	
 HPC	
 from	
 X-­‐ray	
 Crystallography”,	
 J.	
 Wozniak,	
 Joint	
 Lab	
 for	

Extreme	
 Scale	
 Computing,	
 Nice,	
 France.	
 2014.0609.	

9. “The	
 Future	
 of	
 Scientific	
 Workflow”,	
 M.	
 Wilde,	
 DOE	
 Facility	
 Data	
 Management	
 Workshop,	

Oakland,	
 CA,	
 2014.0616	

10. Swift	
 and	
 web	
 workflow	
 portal	
 presentation	
 to	
 DOE	
 Advanced	
 Power	
 Grid	
 Modeling	
 and	

Simulation	
 Workshop,	
 Virginia,	
 2014.0617	

11. MCS	
 student	
 lighting	
 talk,	
 2014.0625	

12. Workflow	
 and	
 Swift	
 Tutorials,	
 Argonne	
 Training	
 Program	
 in	
 Extreme	
 Scale	
 Computing,	

(ATPESC),	
 J.	
 Wozniak,	
 M.	
 Wilde,	
 2014.0814	

13. UChicago	
 Research	
 Computing	
 Center	
 (RCC)	
 outreach	
 event	
 “Mind	
 Bytes”	
 -­‐	
 Swift	
 poster.	

2014.1001	

14. Presentation	
 to	
 Merck	
 researchers,	
 UChicago’s	
 Chicago	
 Innovation	
 Exchange,	
 M	
 Wilde,	

2014.1020	

15. UChicago	
 Mind	
 Bytes	
 2014.1028	

16. “Dataflow	
 for	
 many-­‐task	
 computing:	
 past,	
 present	
 and	
 future”.	
 SC14	
 MTAGS	
 Workshop,	

Keynote	
 talk,	
 M.	
 Wilde,	
 2014.1116	

17. Meetings	
 with	
 principal	
 HPC	
 users	
 from	
 SC14	
 Industrial	
 HPC-­‐Impact	
 panel	
 	
 –	
 GE	
 Global	

Research,	
 AFRL,	
 Intelligent	
 Light,	
 Northrup,	
 Westinghouse,	
 BP,	
 Total,	
 PayPal.	
 2014.1117-­‐
1121	

18. Parallel	
 Computing	
 in	
 Molecular	
 Engineering	
 and	
 Materials	
 Science:	
 Conquering	
 the	

complexity	
 of	
 high	
 performance	
 computer	
 modeling	
 and	
 integrating	
 it	
 into	
 the	
 scientific	

knowledge	
 discovery	
 process.	
 M.	
 Wilde,	
 2014	
 UChicago	
 Discovery	
 Cloud	
 Lecture	
 Series,	

2014.1217	

19. Swift	
 project	
 presentation	
 to	
 Corning	
 materials	
 science	
 research	
 staff,	
 UChicago	

Computation	
 Institute,	
 2015.0211	

20. Swift	
 poster	
 at	
 SI2	
 PI	
 meeting	
 poster	
 session.	
 M.	
 Wilde.	
 2015.0217	

21. Swift	
 presentation	
 to	
 NERSC	
 Workflow	
 Day	
 Meeting,	
 M.	
 Wilde,	
 2015.0220	

22. Swift	
 presentation	
 to	
 Cyberinfrastructure	
 and	
 Geospatial	
 Information	
 Laboratory,	
 UIUC	
 (Dr.	

Shaowen	
 Wang,	
 director),	
 M.	
 Wilde,	
 2015.0317	

23. Swift	
 workflow	
 talk	
 to	
 US	
 Intelligence	
 Community	
 multi-­‐agency	
 briefing	
 workshop,	
 M.	

Wilde,	
 2015.0325	

24. Swift	
 talk	
 and	
 poster	
 presentation,	
 Globus	
 World	
 2015,	
 Argonne	
 	
 –	
 talk	
 and	
 poster	
 session,	

2015.0414	

25. Swift	
 presentation	
 to	
 NERSC	
 workflow	
 technology	
 assessment	
 group,	
 M.	
 Wilde,	
 	
 2015.0429	

26. Swift	
 poster	
 at	
 APS	
 User	
 Meeting	
 Poster	
 Session,	
 M.	
 Wilde,	
 	
 2015.0512	

27. Swift	
 presentation	
 to	
 NCSA	
 Brownbag	
 Lunch	
 (over	
 50	
 attendees),	
 D.	
 Katz,	
 M.	
 Wilde	

2015.0516	

28. Swift	
 talk	
 for	
 Argonne	
 summer	
 student	
 program,	
 2015.0612	

29. Swift	
 intro	
 talks	
 to	
 IIT/UChicago	
 REU	
 program	
 “BigDataX”,	
 J.	
 Wozniak,	
 M.	
 Wilde,	
 2015.0618	

30. Swift	
 Parallel	
 Scripting:	
 Novel	
 Features	
 and	
 Applications.	
 J.	
 Wozniak,	
 Joint	
 Lab	
 for	
 Extreme	

Scale	
 Computing,	
 3rd	
 Workshop,	
 Barcelona,	
 2015.0629	

31. Optimizing	
 data	
 staging	
 based	
 on	
 autotuning,	
 coordination	
 and	
 locality	
 exploitation	
 on	
 large	

scale	
 supercomputers.	
 F.	
 Isaila,	
 Joint	
 Lab	
 for	
 Extreme	
 Scale	
 Computing,	
 3rd	
 Workshop,	

Barcelona,	
 2015.0629	

32. Workflow	
 and	
 Swift	
 Tutorials,	
 Argonne	
 Training	
 Program	
 in	
 Extreme	
 Scale	
 Computing,	

(ATPESC),	
 J.	
 Wozniak,	
 M.	
 Wilde,	
 2015.0811	

33. Keynote	
 address	
 and	
 hands-­‐on	
 tutorial	
 on	
 Swift	
 and	
 many-­‐task	
 parallel	
 scripting	
 for	
 ERAD-­‐
RJ	
 (Regional	
 School	
 in	
 High	
 Performance	
 Computing)	
 at	
 LNCC,	
 Petropolis,	
 Brazil,	

2015.0825http://eradrj2015.lncc.br/	

34. Keynote	
 address	
 for	
 CARLA	
 2015	
 (Latin	
 America	
 High	
 Performance	
 Computing	
 Conference)	

LNCC,	
 Petropolis,	
 Brazil,	
 2015.0827	

	

	

9 Publications (April 2014 – October 2015)

1. Timothy	
 G.	
 Armstrong,	
 Justin	
 M.	
 Wozniak,	
 Michael	
 Wilde,	
 and	
 Ian	
 T.	
 Foster	
 (2015).	
 Swift:	

Extreme-­‐scale,	
 implicitly	
 parallel	
 scripting.	
 Programming	
 Models	
 for	
 Parallel	

Computing	
 MIT	
 Press.	
 	

2. Jonathan	
 Ozik,	
 Michael	
 Wilde,	
 Nicholson	
 Collier,	
 Charles	
 M.	
 Macal	
 (2014).	
 Adaptive	

Simulation	
 with	
 Repast	
 Simphony	
 and	
 Swift.	
 Proc.	
 2nd	
 Workshop	
 on	
 Parallel	
 and	
 Distributed	

Agent-­‐Based	
 Simulations	
 at	
 Euro-­‐Par	
 2014.	
 Porto,	
 Portugal.	
 	

3. Justin	
 M.	
 Wozniak,	
 Kyle	
 Chard,	
 Ben	
 Blaiszik,	
 Ray	
 Osborn,	
 Michael	
 Wilde,	
 and	
 Ian	

Foster	
 (2015).	
 Big	
 data	
 remote	
 access	
 interfaces	
 for	
 light	
 source	
 science.	
 Proc.	
 Big	
 Data	

Computing	
 2015.	
 Limassol,	
 Cyprus.	
 	

4. Justin	
 M.	
 Wozniak,	
 Hemant	
 Sharma,	
 Timothy	
 G.	
 Armstrong,	
 Michael	
 Wilde,	
 Jonathan	
 D.	

Almer,	
 and	
 Ian	
 Foster	
 (2014).	
 Big	
 data	
 staging	
 with	
 MPI-­‐IO	
 for	
 interactive	
 X-­‐ray	
 science.	

Proc.	
 Intl	
 symposium	
 on	
 big	
 data	
 computing.	
 London,	
 UK.	

5. Justin	
 M.	
 Wozniak,	
 Timothy	
 G.	
 Armstrong,	
 Daniel	
 S.	
 Katz,	
 Michael	
 Wilde,	
 and	
 Ian	
 T.	

Foster.	
 (2014).	
 Case	
 studies	
 in	
 dataflow	
 composition	
 of	
 scalable	
 high	
 performance	

applications.	
 Proc.	
 Extreme-­‐scale	
 Programming	
 Tools	
 at	
 SC14.	
 New	
 Orleans,	
 LA	
 USA.	

6. Timothy	
 G.	
 Armstrong,	
 Justin	
 M.	
 Wozniak,	
 Michael	
 Wilde,	
 and	
 Ian	
 T.	
 Foster	
 (2014).	
 Compiler	

techniques	
 for	
 massively	
 scalable	
 implicit	
 task	
 parallelism.	
 Proc.	
 SC	
 2014.	
 New	
 Orleans,	
 LA	

USA.	

7. Scott	
 J.	
 Krieder,	
 Justin	
 M.	
 Wozniak,	
 Timothy	
 G.	
 Armstrong,	
 Michael	
 Wilde,	
 Daniel	
 S.	
 Katz,	

Benjamin	
 Grimmer,	
 Ian	
 T.	
 Foster,	
 and	
 Ioan	
 Raicu	
 (2014).	
 Design	
 and	
 evaluation	
 of	
 the	

GeMTC	
 framework	
 for	
 GPU-­‐enabled	
 many	
 task	
 computing.	
 Proc.	
 HPDC	
 2014.	
 Vancouver,	

Canada.	
 	

8. Ketan	
 Maheshwari,	
 Justin	
 M.	
 Wozniak,	
 Hao	
 Yang,	
 Daniel	
 S.	
 Katz,	
 Matei	
 Ripeanu,	
 Victor	

Zavala,	
 and	
 Michael	
 Wilde	
 (2014).	
 Evaluating	
 storage	
 systems	
 for	
 scientific	
 data	
 in	
 the	
 cloud.	

Proc.	
 5th	
 Workshop	
 on	
 Scientific	
 Cloud	
 Computing	
 (ScienceCloud)	
 at	
 HPDC	

2014.	
 Vancouver,	
 Canada.	

9. Francisco	
 Rodrigo	
 Duro,	
 Javier	
 Garcia	
 Blas,	
 Florin	
 Isaila,	
 Jesus	
 Carretero,	
 Justin	
 M.	
 Wozniak,	

and	
 Robert	
 Ross	
 (2014).	
 Exploiting	
 data	
 locality	
 in	
 Swift/T	
 workflows	
 using	
 Hercules.	
 Proc.	

NESUS	
 Workshop.	
 Porto,	
 Portugal.	

10. Justin	
 M.	
 Wozniak,	
 Timothy	
 G.	
 Armstrong,	
 Ketan	
 C.	
 Maheshwari,	
 Daniel	
 S.	
 Katz,	
 Michael	

Wilde,	
 and	
 Ian	
 T.	
 Foster	
 (2015).	
 Interlanguage	
 parallel	
 scripting	
 for	
 distributed-­‐memory	

scientific	
 computing.	
 Proc.	
 WORKS	
 at	
 SC	
 2015.	
 Austin,	
 Texas	
 USA.	

11. Justin	
 M.	
 Wozniak,	
 Timothy	
 G.	
 Armstrong,	
 Ketan	
 C.	
 Maheshwari,	
 Daniel	
 S.	
 Katz,	
 Michael	

Wilde,	
 and	
 Ian	
 T.	
 Foster	
 (2015).	
 Interlanguage	
 parallel	
 scripting	
 for	
 distributed-­‐memory	

scientific	
 computing.	
 Proceedings	
 of	
 Workflows	
 in	
 Support	
 of	
 Large-­‐Scale	
 Science	
 (WORKS	

2015).	
 Austin,	
 Texas	
 USA.	

12. Justin	
 M.	
 Wozniak,	
 Michael	
 Wilde,	
 and	
 Ian	
 T.	
 Foster	
 (2014).	
 Language	
 features	
 for	
 scalable	

distributed-­‐memory	
 dataflow	
 computing.	
 Proc.	
 Data-­‐Flow	
 Execution	
 Models	
 for	
 Extreme-­‐
Scale	
 Computing	
 at	
 PACT	
 2014.	
 Edmonton,	
 Alberta,	
 Canada.	

13. Matthieu	
 Dorier,	
 Matthieu	
 Dreher,	
 Tom	
 Peterka,	
 Justin	
 M.	
 Wozniak,	
 Gabriel	
 Antoniu,	
 and	

Bruno	
 Raffin	
 (2015).	
 Lessons	
 learned	
 from	
 building	
 in	
 situ	
 coupling	
 frameworks.	
 Proc.	
 ISAV	
 at	

SC	
 2015.	
 Austin,	
 Texas	
 USA.	
 	

14. James	
 C.	
 Phillips,	
 John	
 E.	
 Stone,	
 Kirby	
 L.	
 Vandivort,	
 Timothy	
 G.	
 Armstrong,	
 Justin	
 M.	

Wozniak,	
 Michael	
 Wilde,	
 and	
 Klaus	
 Schulten	
 (2014).	
 Petascale	
 Tcl	
 with	
 NAMD,	
 VMD,	
 and	

Swift/T.	
 Proc.	
 High	
 Performance	
 Technical	
 Computing	
 in	
 Dynamic	
 Languages	
 at	
 SC	

2014.	
 New	
 Orleans,	
 LA	
 USA.	

15. Ketan	
 Maheshwari,	
 Justin	
 Wozniak,	
 Timothy	
 Armstrong,	
 Daniel	
 S.	
 Katz,	
 T.	
 Andrew	

Binkowski,	
 Xiaoliang	
 Zhong,	
 Olle	
 Heinonen,	
 Dmitry	
 Karpeyev,	
 and	
 Michael	

Wilde	
 (2015).	
 Porting	
 ordinary	
 applications	
 to	
 Blue	
 Gene/Q	
 supercomputers.	
 Proc.	
 eScience	

2015.	
 Munich,	
 Germany.	

16. Justin	
 M.	
 Wozniak,	
 Timothy	
 G.	
 Armstrong,	
 Michael	
 Wilde,	
 and	
 Ian	
 Foster	
 (2015).	
 Swift/T:	

Dataflow	
 composition	
 of	
 Tcl	
 scripts	
 for	
 petascale	
 computing.	
 Proc.	
 Annual	
 Tcl/Tk	
 Conference	

2015.	
 Manassas,	
 Virginia.	

17. Justin	
 M.	
 Wozniak,	
 Timothy	
 G.	
 Armstrong,	
 Ketan	
 C.	
 Maheshwari,	
 Daniel	
 S.	
 Katz,	
 Michael	

Wilde,	
 and	
 Ian	
 T.	
 Foster	
 (2015).	
 Toward	
 interlanguage	
 parallel	
 scripting	
 for	
 distributed-­‐
memory	
 scientific	
 computing.	
 IEEE	
 CLUSTER	
 2015.	
 Chicago,	
 IL	
 USA.	

18. Zhao Zhang. Enabling Efficient Parallel Scripting on Large-scale Computers. (2014). Ph.D
Dissertation. The University of Chicago.

19. Timothy Armstrong. Implicitly parallel scripting as a practical and massively scalable
programming model for high-performance computing. (2015). Ph. D. Dissertation. The University
of Chicago.

	

10 Impacts

Impact on the development of the principal discipline(s) of the project

The Swift parallel scripting system boosts the productivity of data- and computation-intensive biomedical
research efforts by making large-scale parallel execution of application programs easier and faster. Swift
makes parallel systems - from multicore workstations to grids, clouds and supercomputers - easier to fully
and efficiently use, thus boosting research productivity. It addresses the conflict between the growing
parallelism of future computing systems and the complexity of usefully applying that parallelism. And it
enables research groups to more effectively validate, share, and replicate large-scale computing results
and methods.

The Swift Project explores the important computer science question of how best to express the high-level
integration programming of large-scale applications that have some degree of independently parallel
tasks, and how to enable productive script-style programming of large-scale computing resources to
enable their use by a broader scientific community with less effort and distraction form the scientific
mission.

It is breaking ground in an approach that treats grids and petascale clusters as if they are complex chips,
and takes a code-generation approach to automating the mapping of scientific workflow, loosely coupled
by files instead of tightly coupled by messages, to these large-scale systems. By treating entire scientific
applications as if they were functions, Swift leverages the simplicity and uniformity of the functional
model to solve complex data flow specification problems.

Impact on other disciplines

Swift is making progress towards improving the ability of scientists and engineers to use large scale grids
and petascale clusters for scientific programming. Swift improves research productivity in every data-
intensive and/or compute-intensive scientific discipline by (1) processing many application runs in
parallel, on large datasets, as specified by high-level scripts, without explicit parallel programming; (2)
automating parallel, distributed data management; (3) running application scripts - without change -
across a broad range of computing scales and platform types; and (4) recording provenance data for
validation, sharing, discovery, and replication of results.

Impact on the development of human resources

Swift makes large-scale computing resources more accessible to students and researchers, and lowers the
barrier to enabling students to do large-scale data analysis in the sciences. Students have been effectively
using Swift for both CS research and to execute their scientific workflows. The project makes significant
research and education opportunities available to a large number of students (both undergraduate and
graduate) and post-doctoral researchers.

Impact on physical resources that form infrastructure

Swift provides an easier-to-use ``on-ramp'' for cluster, cloud, and grid resources including those of the
XSEDE facility and the Open Science Grid, and campus research computing centers.

Impact on information resources that form infrastructure

Swift’s provenance tracking capabilities make it possible to track the derivation history of
computationally-produced components of information resources, and make them more reproducible and
re-usable by the resource users.

Impact on technology transfer

PI M. Wilde and developer and researcher P. M. Hategan are involved in a startup “Parallel.Works”
(http://parallelworks.com), launched with initial seed funding from the University of Chicago's Innovation
Fund, to make the Swift parallel scripting language available to commercial users through an enhanced
Galaxy portal, as a SaaS offering.

Impact on society beyond science and technology

Swift can enable scientists, engineers, and product/service developers in industry to solve large-scale
problems in energy and environmental modeling, and is being adopted in applications in drug design,
health care, energy, environment, business and economics.

	

