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Abstract—Swift/T is a high-level language for writing concise,
deterministic scripts that compose serial or parallel codes im-
plemented in lower-level programming models into large-scale
parallel applications. It executes using a data-driven task parallel
execution model that is capable of orchestrating millions of
concurrently executing asynchronous tasks on homogeneous or
heterogeneous resources. Producing code that efficiently executes
at this scale requires sophisticated compiler transformations:
poorly optimized code inhibits scaling with excessive synchro-
nization and communication. We present a comprehensive set of
compiler techniques for data-driven task parallelism, including
novel compiler optimizations and intermediate representations.
We report application benchmark studies, including unbalanced
tree search and simulated annealing, and demonstrate that our
techniques greatly reduce communication overhead and enable
extreme scalability, distributing up to 612 million dynamically
load balanced tasks per second at scales of up to 262,144 cores
without explicit parallelism, synchronization, or load balancing
in application code.

I. INTRODUCTION

In recent years, large-scale computation has become an
indispensable tool in many fields, including those that have
not traditionally used high-performance computing. These in-
clude data-intensive applications such as machine learning and
scientific data crunching and compute-intensive applications
such as high-fidelity simulations.

The traditional development model for high-performance
computing requires close cooperation between domain experts
and parallel computing experts to build applications that
efficiently run on distributed-memory systems, with careful
attention given to low-level concerns such as distribution of
data, load balancing, and synchronization. Many real-world
applications, however, are amenable to generic approaches to
these concerns. Particularly, many applications are naturally
expressed with data-driven task parallelism, in which massive
numbers of concurrently executing tasks are dynamically
assigned to execution resources, with synchronization and
communication handling using intertask data dependencies.
Variants of this execution model for distributed-memory and
heterogeneous systems have received significant attention be-
cause of the attractive confluence of high performance with
ease of development for many applications. Data-driven task
parallelism can expose more parallelism than can alternative
models such as fork-join [29], and it addresses challenges
of utilizing heterogenous, distributed-memory resources with
transparent data movement between devices and dynamic

data-aware task scheduling. Recent work has explored imple-
menting this execution model with libraries and conservative
language extensions to C for distributed-memory and heteroge-
nous systems [3], [8], [9], [28] and has shown that performance
can match or exceed performance of code directly using the
underlying interfaces (e.g., message passing or threads). One
reason for this success is that sophisticated algorithms for
load balancing (e.g., work stealing) or data movement, usually
impractical to reimplement for each application, can be imple-
mented in an application-independent manner. Another reason
is that the asynchronous execution model is effective at hiding
latency and exploiting available resources in applications with
irregular parallelism or unpredictable task runtimes.

Swift/T [36] is a high-level implicitly parallel programming
language that aims to make writing massively parallel code
for this execution model as easy and intuitive as sequential
scripting in languages such as Python. Implementing a very
high-level language such as Swift/T efficiently and scalably is
challenging, however, because the programmer specifies little
beyond data dependencies, which are implicitly defined by
function composition or reads and writes to variables and
data structures. Thus, internode data movement, parallel task
management, and memory management are left entirely to
the language’s compiler and runtime system. Since large-
scale applications may require execution rates of hundreds
of millions of tasks per second on many thousands of cores,
this complex coordination logic must be implemented both
efficiently and scalably.

For this reason, we have developed, adapted, and im-
plemented a range of compiler techniques for data-driven
task parallelism, presented here. By optimizing the use of a
distributed runtime system’s operations, communication and
synchronization overhead is reduced by an order of magnitude.
In addition to this primary outcome of the work, we make the
following technical contributions:

• Characterization of the novel compiler optimization prob-
lems arising in data-driven implicit task parallelism

• Design of an intermediate representation for effective
optimization of the execution model

• Novel compiler optimizations that reduce coordination
costs by an order of magnitude

• Compiler techniques that achieve low-overhead dis-
tributed automatic memory management at massive scale
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Fig. 1: Task and data dependencies in data-driven task paral-
lelism, forming a spawn tree rooted at task a. Data dependen-
cies on shared data defer execution of tasks until the variables
are finalized.

II. DATA-DRIVEN TASK PARALLELISM AND SWIFT/T

We introduce the data-driven task parallelism execution
model (Section II-A), show how it is programmable with the
high-level Swift/T language (Section II-B), and describe a
massively scalable implementation (Section II-C).

A. Abstract Execution Model

In data-driven task parallelism, a program is organized into
task definitions with explicit inputs. A task is a runtime instan-
tiation of a task definition with inputs bound to specific data.
The code in a task can do arbitrary computation and perform
runtime operations such as spawning tasks, or reading/writing
shared data that is globally accessible to any task that holds
a reference to an item of data. Once executing, tasks run to
completion without preemption.

Each task can spawn asynchronous child tasks, resulting in
a spawn tree of tasks as in Figure 1. Parent tasks can pass
data to their child tasks at spawn time, for example small
data such as numbers or short strings, along with references
to arbitrary shared data. Shared data items provide a means
for coordination between multiple tasks. For example, a task
can spawn two tasks, passing both a reference to a shared data
item, which one task reads and the other writes. Data depen-
dencies, which defer the execution of tasks, are the primary
synchronization mechanism. The execution model permits a
task to write (or not write) any data it holds a reference to,
allowing a wide range of runtime data dependency patterns
beyond static task graphs.

The execution model is much lower level than high-level
programming models such as the Swift/T language discussed
in the next section. There is no high-level syntax, and safety
guarantees are limited. For example, race conditions are pos-
sible if shared data is read without synchronizing using data
dependencies. Explicit bookkeeping is also needed for both
memory management and correct finalization of variables.
Programming errors could result in memory leaks, prematurely
freed data, or deadlocks. Many other more restrictive task-
parallel programming models, such as task graphs or fork-join
parallelism, can be expressed with these basic constructs, so
optimizations for this model are broadly applicable.

B. Overview of Swift/T Programming Language

The overall Swift/T system has been described in previous
work [36], so we focus here on language semantics relevant
to compiler optimization. The Swift/T language’s syntax and
semantics are derived from the Swift language [34]. Swift/T
focuses on high-performance fine-grained task parallelism,
such as calling foreign functions (including C and Fortran)
with in-memory data and launching kernels on GPUs and other
accelerators [16]. These foreign functions are integrated into
the Swift/T language as typed leaf functions that encapsulate
computationally intensive code, leaving parallel coordination,
task distribution, and data dependency management to the
Swift/T dataflow programming model. Figure 2 illustrates how
leaf functions can be composed into an application, with
complexities such as data-dependent control flow expressible
naturally in the language.

The Swift/T language is a global-view implicitly parallel
language, meaning that, by default, execution order of state-
ments is constrained only by data dependencies, and that
execution location is left to language implementation, with
program variables logically accessible to code regardless of
where it executes. That is, program logic can be expressed
without explicit concurrency, communication, or data parti-
tioning. Certain control structures, including conditionals and
explicit wait statements, add additional ordering dependencies
to code, while annotations can provide hints or constraints
for data or task placement. Two types of loops are available:
foreach loops, for parallel iteration, and for loops, where
iterations are pipelined, with data passed from one iteration
to the next. Swift/T also supports unbounded recursion.

Swift/T can guarantee deterministic execution even with
implicit parallelism because its standard data types are mono-
tonic; that is, they cannot be mutated in such a way that
information is lost or overwritten. A monotonic variable starts
off empty, then incrementally accumulates information until
it is finalized, whereupon it cannot be further modified. One
can construct a wide variety of monotonic data types [11],
[17]. Basic Swift/T variables are single-assignment I-vars [21],
which are finalized when first assigned. Composite monotonic
data types can be incrementally assigned in parts but can
not be overwritten. Swift/T programs using only monotonic
variables are deterministic by construction, up to the order of
side-effects such as I/O. For example, the output value of an
arbitrarily complex function involving many data and control
structures is deterministic, but the order in which debug print
statements execute depends on the nondeterministic order in
which tasks run. Further nondeterminism is introduced only
by non-Swift/T code, library functions such as rand(), or
by use of special nonmonotonic variables.

The sparse dynamically sized array is the main composite
data type in Swift/T. Integer indices are the default, but
other index types including strings are supported. The array
can be assigned all at once (e.g., int A[] = f();), or
in parts (e.g., int A[]; A[i] = a; A[j] = b;). The
array lookup operation A[i] will return when A[i] is set.



1 blob models[], res[][];
2 foreach m in [1:N_models] {
3 models[m] = load(sprintf("model%i.data", m));
4 }
5
6 foreach i in [1:M] {
7 foreach j in [1:N] {
8 // initial quick evaluation of parameters
9 p, m = evaluate(i, j);

10 if (p > 0) {
11 // run ensemble of simulations
12 blob res2[];
13 foreach k in [1:S] {
14 res2[k] = simulate(models[m], i, j);
15 }
16 res[i][j] = summarize(res2);
17 }
18 }
19 }
20
21 // Summarize results to file
22 foreach i in [1:M] {
23 file out<sprintf("output%i.txt", i)>;
24 out = analyze(res[i]);
25 }

(a) Implicitly parallel Swift/T code
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(b) Visualization of optimized parallel execution for M = 2
N = 2 S = 3.

Fig. 2: An application – an amalgam of several real scientific applications – that runs an ensemble of simulations for many
parameter combinations. The code executes with implicit parallelism, ordered by data dependencies.
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Fig. 3: Runtime process layout on distributed-memory system.
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Fig. 4: Runtime architecture showing distributed worker pro-
cesses coordinating through task and data operations.

An incomplete array lookup does not prevent progress; other
statements can execute concurrently.

C. Massively Scalable Data-Driven Task Parallelism

The ADLB [18] and Turbine [35] runtime libraries provide
the runtime support for massively scalable data-driven task
parallelism on a MPI-2 or MPI-3 communication layer [31].

Fig. 5: Throughput and scaling of runtime system for varying
task durations.

In this runtime system, processes are divided into two roles:
workers and servers, which can be laid out in various ways,
for example with one server process allocated to each shared-
memory node, as shown in Figure 3. Worker processes execute
any program logic, coordinating with each other through
remote execution of data and task operations on servers, as
shown in Figure 4. These operations are low-latency, typically
taking microseconds to process, which minimizes delays to
worker processes. If needed, parallel MPI functions can be
executed by worker processes that are dynamically grouped
into “teams” with a shared MPI communicator [37].

The data functionality includes rich data structures such
as scalar values, strings, binary arrays, structs, and associa-
tive arrays, providing the primitives needed to implement
Swift’s monotonic data types as shared data items. Memory
management of this data is supported using read and write
reference counters for each data item, allowing unused data
to be deleted and finalized data to be read-only. The task
functionality implements an efficient distributed task queue,
with load balancing using randomized work stealing between
servers. Task data dependencies are supported, so that task
can be released when data is finalized, at the granularity
of an entire data structure or individual array subscripts, as
shown in Figure 4. Figure 5 illustrates the scalability and



1 foreach i in [1:N] {
2 foreach j in [1:M] {
3 a, b, c = A[i-1][j-1], A[i-1][j], A[i][j-1];
4 A[i][j] = h(f(g(a)), f(g(b)), f(g(c)));
5 }
6 }

Fig. 6: Swift code fragment illustrating wavefront pattern.

task throughput of Swift/T programs using the runtime system
on the Blue Waters supercomputer, where Swift/T achieved
a peak throughput of 1.47 billion tasks/s on 524,288 cores.
Tasks of 1 ms or more achieve high efficiency because when
the servers have spare capacity, queuing delays are minimal.

III. COMPILER OPTIMIZATION

STC is an optimizing compiler for Swift/T that targets the
distributed runtime described previously. Within the compiler
we have implemented optimizations aimed at reducing com-
munication and synchronization without loss of parallelism
(Section III-A). An intermediate representation for the pro-
gram captures the execution model (Section III-B), allowing
optimization of synchronization, shared data, and reference
counting (Sections III-C, III-E, III-F, respectively).

A. Optimization Goals for Data-driven Task Parallelism

To optimize a wide range of data-driven task parallelism
patterns, we need compiler optimization techniques that can
understand the semantics of task parallelism and monotonic
variables in order to perform major transformations of the task
structure of programs to reduce synchronization and commu-
nication at runtime, while preserving parallelism. Excessive
runtime operations impair program efficiency because tasks
waste time waiting for communication; they can also impair
scalability by causing bottlenecks for data or task queues.

The implicitly parallel Swift/T code in Figure 6 illus-
trates the opportunities and challenges of optimization. The
code specifies a dynamic, data-driven wavefront pattern of
parallelism, where evaluation of cell values is dynamically
scheduled based on data availability at runtime, allowing exe-
cution to adapt to variable task latencies. Two straightforward
transformations give immediate improvements: treating input
parameters such as i and j and hoisting the lookups of
A[i-1] and A[i] out of the inner loop body. The real
challenge, however, is in efficiently resolving implied data
dependencies between loop iterations. The naïve approach uses
three data dependencies per input cell; but with this strategy,
synchronization can quickly become a bottleneck. Smarter
approaches can identify common inputs of neighboring cells
to avoid redundant data reads, or defer task spawns until
input data is available: if the task for (i − 1, j) spawns the
task for (i, j), only grid cell A[i][j + 1] must be resolved at
runtime since both other inputs were available at (i − 1, j).
The characteristics of the f, g, and h functions also affect
performance of different parallelization schemes. Fusing f and
g invocations is a clear improvement because no parallelism
is lost; but, depending on function runtimes and other factors,
it may be better to execute the loop body invocations as
four separate f(g(...)) and h(...) tasks to maximize
parallelism or as a single merged task to minimize overhead.
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Fig. 7: STC compiler architecture. The frontend produces
IR-1, to which optimization passes are applied to produce
successively more optimized IR-1 trees. Postprocessing adds
intertask data passing and reference counting information to
produce IR-2 for code generation.

B. Intermediate Representation

The STC compiler uses a medium-level intermediate repre-
sentation (IR) that captures the execution model of data-driven
task parallelism. Two IR variants are used by stages of the
compiler (Figure 7). IR-1 is generated by the compiler fron-
tend and then optimized. IR-2 includes additional information
for code generation: explicit bookkeeping for reference counts
and data passing to child task. Sample IR-1 code for a parallel,
recursive Fibonacci calculation is shown in Figure 8.

Each IR procedure is structured as a tree of blocks. Each
block is represented as a sequence of statements. State-
ments are either composite conditional statements or single
IR instructions operating on input/output variables, giving a
flat, simple-to-analyze representation. Control flow is repre-
sented with high-level structures: if statements, foreach loops,
do/while loops, and so forth. Each block executes sequen-
tially, but child blocks of some control-flow structures execute
asynchronously, while some instructions spawn asynchronous
tasks. Data-dependent execution is implicit in some asyn-
chronous instructions or explicit with wait statements execute
a code block after a set of variables is finalized.

Variables are either single-assignment locally stored values
or references to shared data, that is, unique identifiers used
to locate data on a remote process. A reference is either the
initial reference to a variable allocated in the block or an alias
obtained by duplicating a reference, by acquiring a reference
stored in a data structure, or by subscripting a composite
variable. Shared monotonic data is a first-class construct in
the IR, so optimizations can exploit monotonic semantics.

C. Adaption of Traditional Optimizations

The foundation of our suite of optimizations is a range
of traditional optimization techniques adapted from conven-
tional compilers [19] to our intermediate representation and
execution model in general. This required substantial changes
to many of the techniques, particularly to generalize them to
monotonic variables, and also to be able to effectively optimize
across task boundaries and with concurrent semantics.

STC includes a powerful value numbering [19] (VN) anal-
ysis. that discovers congruence relations in an IR function
between various expression types, including variables, array
cells, constants, arithmetic expressions, and function calls.
Annotations on functions, including standard library and user



() @main () {
declare $int v_n, int f // variables for block
CallExtLocal argv [ v_n ] [ "n" ] // get argument
Call fib [ f ] [ v_n ] // fib runs async.
wait (f) { // print result once computed

declare $int v_f
LoadScalar v_f f // Load finalized value of f to v_f
CallExtLocal printf [ ] [ "fib(%i)=%i" v_n v_f ]

}
}

// Compute o := fibonacci(i)
// input v_i is value, output o is shared var
(int o) @fib ($int v_i)
declare $boolean t0
LocalOp <eq_int> t0 v_i 0 // t0 := (v_i == 0)
if (t0) {

StoreScalar o 0 // fibonacci(0) == 0
} else {

declare $boolean t2
LocalOp <eq_int> t2 v_i 1 // t2 := v_i + 1
if (t2) {

StoreScalar o 1 // fibonacci(1) == 1
} else {

declare $int v_i1, $int v_i2, int f1, int f2
// Compute fib(i-1) and fib(i-2) concurrently
LocalOp <minus_int> v_i1 v_i 1 // v_i1 := v_i + 1
Call fib [ f1 ] [ v_i1 ]
LocalOp <minus_int> v_i2 v_i 2 // v_i2 := v_i + 2
Call fib [ f2 ] [ v_i2 ]
// Compute sum once f1, f2 assigned
AsyncOp <plus_int> o f1 f2 // o := f1 + f2

}
}

}

Fig. 8: IR-1 for recursive Fibonacci optimized at -O2

functions, assist this optimization. For example, the annotation
@pure asserts that a function output is deterministic, and
it has no side-effects. The VN pass identifies congruence
relations for each IR block. Value congruence, for example,
retrieve(x) ∼=V y ∗ 2 ∼=V 6, means that multiple expressions
have the same value. Alias congruence, for example y ∼=A

z ∼=A A[0], means that IR variables refer to the same runtime
shared data. Alias congruence implies value congruence. A
relation for a block B applies to B and all descendant
blocks, because of the monotonicity of IR variables. A set
of expressions congruent in B defines a congruence class.

STC’s VN implementation visits all instructions in an IR
function with a preorder tree walk. Each instruction, for
example, StoreInt A 1, can yield congruence relations: in
this case A ∼=V store(1) and 1 ∼=V retrieve(A). These new
relations are added to the known relations, perhaps merging
existing congruence classes. For example, if B ∼=V store(1),
then A ∼=V B. Erroneous user code that double-assigns a
variable forces VN to abort, since the correctness of the
analysis depends on each variable having a consistent value.
Congruence relations in a block always apply to descendant
blocks. We also propagate congruence relations upward to
parent blocks in the case of conditional statements. For ex-
ample, if x ∼=V 1 on both branches of an if statement, it
is propagated to the parent. We create temporary variables
if necessary to do this, for example, if x ∼=V retrieve(A)
and y ∼=V retrieve(A) on the branches, a new variable
t1 is assigned x and y on the respective branches, so that
t1 ∼=V retrieve(A) in the parent.

After the initial VN analysis, IR transformations can use the

congruence information. The basic VN optimization replaces
of variables with the canonical congruence class member:
inputs using value congruence classes, and outputs using alias
congruence classes. The canonical member is chosen based on
the expression type (e.g., constants are preferred) and other
factors (e.g., the first variable to be computed is preferred).
Variables are thereby replaced with constants, and redundant
computations or shared data loads can be avoided.

STC’s VN analysis supports constant folding [19], where
expressions with constant arguments can be evaluated during
the VN tree walk. Constant results can then be propagated
by using congruence relations, allowing constant folding of
further expressions and merges of congruence classes. STC
supports binding key-value command-line arguments to con-
stants to compile specialized versions of a program.

Dead code elimination (DCE) eliminates unneeded code
that is never executed or that computes unneeded results.
This includes both unexecuted user code and dead code from
earlier optimization passes. VN, for example, eliminates uses
of redundant variables but depends on DCE to later identify
and eliminate redundant instructions.

Function inlining is an important optimization that creates
interprocedural optimization opportunities for later passes and
eliminates function call overhead. Functions with a single call
site are always inlined. Otherwise, a simple heuristic is used:
function instruction count × # call sites < 500. Cycles of
recursive calls are identified in order to avoid infinite cycles
of inlining. Entire programs can often be inlined into the main
function, allowing full interprocedural optimization.

Several loop optimizations are implemented. Loop invariant
hoisting is important for many Swift/T scripts, where redun-
dant operations such as array accesses occur inside nested
parallel foreach loops. Loop fusion fuses foreach loops with
identical bounds to reduce runtime loop management overhead
and allow optimization across loop bodies. Loop unrolling
completed expands loops with <16 iterations, and unrolls all
other foreach loops by up to a a factor of 8x, limited by a
simple heuristic that caps code-size growth at 256 instructions
per unrolled loop. The main benefit of unrolling in parallel
coordination code is to allow optimization across iterations.

Instruction reordering constructs a dataflow graph of in-
structions in a block and attempt to place readers of monotonic
variables after writers to aid further optimization.

D. Shared Monotonic Data Optimizations

We devised further optimizations that exploit the properties
of shared monotonic data in order to reduce runtime operations
and to assist other optimizations by simplifying the IR.

Finalized variable analysis (FVA) detects which I-vars,
monotonic arrays, and so forth are finalized at each statement.
A variable is finalized if an instruction finalizes it directly (e.g.,
writing an I-var) or within a wait statement for that variable.
Alias congruence relations from VN are used to enhance the
analysis. Data dependency analysis also allows finalization
to be inferred in further situations. For example, if I-var x
is the output of an operation with input y, then y must be



finalized inside wait(x) { ... }. FVA allows inlining of
wait continuations and strength reduction, whereby statements
using expensive runtime data or task operations are replaced
with ones that use fewer or no runtime operations, for example
by skipping runtime data-dependency checks or executing an
operation within the current task context.

Store coalescing combines writes to shared composite data
types such as arrays and structs into single store operations. It
is applied when a variable is written multiple times in a block,
for example if multiple indices of an array are assigned.

Argument localization addresses inefficiencies in the default
function calling convention, where arguments are passed as
references to shared data that may be unfinalized, which often
leads to unnecessary data dependencies, reads, and writes
to shared data. This overhead is significant, especially for
short functions. The same essential problem exists with values
passed between sequential loop iterations. We address this
problem with an analysis that identifies when code cannot
make progress without an input being finalized. The code is
transformed so that the input is passed as a regular value, rather
than a reference to shared data, and then add wait statements
to function call sites where necessary.

E. Task Parallelism Optimizations

We implemented a further set of transformations, specific to
data-driven task parallelism, that rearrange the task structure
of the program to reduce runtime operations and assist further
optimization. These must avoid reducing worthwhile paral-
lelism that has granularity to justify task creation overhead.

Two properties of IR instructions can decide whether a
transformation reduces worthwhile parallelism. First, an in-
struction is long running if it executes synchronously in the
current task for a long or unbounded time. STC’s optimization
passes avoid serializing execution of long-running instructions
that could run in parallel. Second, an instruction is progress
enabling if execution of the instruction may fulfil data depen-
dencies of other tasks: for example, a shared data write. The
optimizer avoids deferring execution of progress enabling code
by a long or unbounded amount of time. For example, it will
not add direct or indirect dependencies from a long-running
instruction to a progress-enabling instruction. To categorize
operations, whitelists of short-running instructions and black-
lists of progress-enabling instructions are used. Annotations on
function definitions provide further information: for example,
if they are short-running.

Asynchronous op inlining is a variant of inlining where an
asynchronous built-in operation (e.g., an arithmetic operation
or array lookup) is expanded to a wait statement plus non-
asynchronous instruction, allowing later optimizations to ma-
nipulate task structure.

Task coalescing is a family of techniques that reconfigure
the IR task structure. One effective technique, which we
call task pushdown, is to resolve data dependencies between
tasks by relocating statements, such as wait statements and
data-dependent instructions, to descendant blocks in the IR
tree where input variables are assigned. This can enable the

1 a = f1(); b = f2(a);
2 c, d = f3(a, b); e = f4(f5(c);
3 f = f4(f5(d); g = f6(e, f);

(a) Swift/T code fragment
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(d) After pipeline fusion merges tasks
Fig. 9: Traces of execution showing optimization of task and
data dependencies in a Swift/T code fragment.

sequence of transformations in Figure 9c, where VN, FVA,
and DCE eliminate shared data items, completing conversion
of data dependency to task spawn edges. Task coalescing also
merges tasks, for example nested or sibling wait statements,
when it can determine that the transformation will not prevent
progress at runtime.

Another optimization is pipeline fusion, illustrated in Fig-
ure 9d. A commonly occurring pattern is a sequentially
dependent set of function calls: a “pipeline.” We can avoid
runtime task dispatch overhead and data transfer without any
reduction in parallelism by fusing a pipeline into a single task.
For tasks with short duration or large input/output data, this
method saves much overhead. As a generalization, a fused task
will spawn dependent tasks if a pipeline “branches.” STC’s
pipeline fusion was inspired by the like-named technique from
streaming languages [12], which is similar in concept but not
similar in implementation. Streaming languages have static
task graphs with dynamic flows of data, whereas data-driven
task parallelism has dynamic task graphs with discrete data.
In streaming languages, pipeline fusion trades off pipeline
parallelism for lower overhead. In Swift/T, there is no pipeline
parallelism to lose, but the more dynamic execution model
requires more analysis to identify valid opportunities.

F. Finalization and Memory Management Optimizations

Efficient memory management is a challenging issue in a
distributed, parallel context, especially in the highly dynamic
execution model of data-driven task parallelism, because ref-
erences to data may be spread across a large number of con-
current processes. The classic memory management problem
is generally formulated as the problem of detecting when
no direct or indirect references to a data item are held by
executing program. In a programming model with monotonic



data, such as Swift/T, the variable finalization problem can be
formulated similarly, since the problem of detecting when all
remaining references to a data item will not be used to write
to the data item (i.e., are read-only references).

We tackle both problems with automatic distributed ref-
erence counting, by giving each shared data item read/write
reference counts (refcount). When the write refcount drops to
zero, the variable is finalized and cannot be written; when both
refcounts drop to zero, the variable can be deleted. This design
is multipurpose: for example, an I-var starts with one write
reference, which is decremented upon assignment to finalize
it. In the case of arrays, the compiler must determine which
statements may read or write each variable, and write refcounts
are incremented and decremented as active tasks that could
modify the array are spawned and complete.

Two postoptimization passes over the IR add all necessary
refcount operations. The first pass identifies where read and
write references are passed from parent to child tasks. For
example, if the array A is declared in a parent block and
written within a wait statement, a passed write reference is
noted. The second pass performs a postorder walk over the IR
tree to add reference counting operations.

Naïve reference counting strategies that update reference
counts every time a reference is passed into an instruction
or goes out of scope are problematic: even in seemingly
straightforward code, these reference count updates can more
than double the number of data operations executed.

STC uses a range of techniques to address this prob-
lem. In each block, four integers are initialized to zero
for each shared variable in scope. These track read/write
increments/decrements (incrs/decrs). A pass over the block
decrements the appropriate counter for a copied reference to
a variable (e.g., passed to an instruction or into an annotated
child block), and decrements for each reference that is acquired
from a new variable, the parent block, or from an instruction.
Refcount operations are placed in the block only after this
counting process completes. The default placement strategy
puts incrs and decrs at the start and end of the block,
respectively, thus ensuring that refcounts are not dropped to
zero too early during execution.

This framework supports several optimizations. Merging
incrs/decrs is achieved by the use of counters and an alias
analysis that detects when two program variables refer to the
same reference counted data item. Cancellation of incrs/decrs
can happen, for example, when an incr for a reference passed
to a single child task cancels out a decr for the variable
going out of scope in the parent. This is subject to a pass
over the block to verify that the reference is not used after
being handed to the child. Refcount incrs or decrs can be
piggybacked on other data operations, such as variable creation
or reads. With a distributed runtime, the piggybacked operation
is essentially free because it requires no additional synchro-
nization and minimal additional communication (a few bytes).
Unplaced incrs/decrs can be hoisted to the parent, subject to
conditions: the incr/decr is not in a loop. If in a conditional,
the incr/decr must occur on all branches; and if a decr, the

child block must be executed synchronously within the parent.
In combination, these techniques allow reference counting
overhead to be reduced greatly. In cases where the number
of readers/writers is determined statically, such as static task
graphs, all incrs/decrs are merged, cancelled, or piggybacked,
which eliminates the need for reference counting operations.
In cases of large parallel loops, reference counting overhead
is amortized over the entire loop with batching.

IV. EVALUATION OF COMPILER OPTIMIZATIONS

To characterize the impact of different optimization levels,
we chose five benchmarks that capture common patterns of
asynchronous task parallelism. Sweep is a parameter sweep
with two nested loops and completely independent tasks with
uneven task durations governed by a log-normal distribu-
tion, requiring dynamic assignment of tasks to resources.
ReduceTree is a synthetic application comprising a mas-
sive reduction tree with the same structure as a recursive
Fibonacci calculation. At full scale, the results of billions
of asynchronously-executing tasks are reduced to a single
result. UTS (Unbalanced Tree Search) is a benchmark that
simulates a recursive search procedure with a highly irregular
structure, requiring efficient load balancing [22]. The core
of UTS in Swift/T is a six line recursive function that calls
into the serial C code performing the UTS computation. The
serial code executes until it has processed 1 million tree
nodes or accumulated 128 unprocessed nodes. Wavefront is
an application with the wavefront pattern in Figure 6 that
executed a single function call to compute each grid cell, with
runtime following a log-normal distribution with mean 5ms.
Annealing is a science application comprising an iterative
simulated annealing optimization algorithm implemented in
∼500 lines of Swift/T and a simulation implemented in
∼2,000 lines of C++. The objective function of the algorithm
is a large ensemble of simulations, with up to 10,000-way
parallelism, which is multiplied by the parallelism derived
from multiple annealing runs for different parameters. Task
runtimes are irregular and vary as a run progresses, requiring
highly dynamic load balancing to redistribute tasks, especially
to keep workers busy as straggler tasks from each objective
function evaluation complete.

We implemented baseline versions of four benchmarks as
C programs that directly use the ADLB [18] runtime library.
We strived to implement them efficiently and scalably, but
in a straightforward manner, that is, without the complex
application-specific partitioning, load balancing, or synchro-
nization schemes that a highly optimized parallel code might
use. The Sweep ADLB baseline statically partitioned the
outer loops between nodes, with up to four processes per
node inserting tasks. The UTS ADLB baseline uses the same
heuristics as were used in the Swift/T version and avoids all
shared data operations, with each task spawning tasks directly.
In the ReduceTree ADLB baseline, each task (f(n)) spawned
two child tasks to compute f(n−1) and f(n−2), and a third
data-dependent task to sum the results. The Wavefront ADLB



(a) Sweep (0.2ms): 64 cores
4× 107 iterations

(b) ReduceTree: 131,072 cores
25.2B tree nodes

(c) UTS: 16,384 cores
9.4B tree nodes

(d) Wavefront: 512 cores
(1200x1200 grid)

(e) Annealing: 4096 cores
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Fig. 11: Impact of optimizations on # of runtime operations
issued to servers.

baseline used a master process to manage data dependencies
and launch work tasks.

To pare down Swift/T configurations to a manageable
number, we grouped optimizations into four levels: O0:
naïve compilation strategy with no optimization; O1: basic
redundancy-reducing optimizations, namely, value numbering,
constant folding, dead code elimination, loop fusion, final-
ized variable analysis, and refcount optimizations; O2: more
aggressive optimizations, namely, asynchronous op inlining,
task coalescing, arg localization, and hoisting; and O3: the
remaining optimizations, namely, function inlining, pipeline
fusion, loop unrolling, and instruction reordering. Automatic
memory management was enabled in all cases.

A. Method for Large-Scale Experiments

We evaluated the impact of optimizations on throughput and
scalability by running our benchmark applications at different
combinations of scale and optimization levels on the Cray XE6
nodes of the Blue Waters supercomputer [20], which have 2
AMD Interlagos model 6276 CPUs with 32 cores total with
clock speeds of >2.3 GHz and 64 GB of memory. We assigned
one core per node to act as a server while the remainder were
workers. Figure 10 shows application speedup, measured with
the metric appropriate to each benchmark to quantify how
rapidly and efficiently compiled Swift/T parallel coordination
code can generate and distribute work. We increased the scale
of each application at each optimization level until it failed to
continue scaling.

To better understand the performance impact of the opti-
mizations on the runtime, we instrumented the servers with
performance counters that collect aggregate statistics with low
overhead, including counts of each operation type invoked on
servers and statistics about tasks and workstealing. Figure 11
shows operation counts summarized into several categories of
task and data operations, plus a server category for work-
stealing attempts and other communication between servers.

B. Discussion and Analysis of Large-Scale Experiments

These experimental results show that all applications benefit
markedly from basic optimization at O1, but further optimiza-
tions often, but not always, provide significant additional ben-
efits. ReduceTree shows good scaling at all optimization levels
with no scaling bottlenecks. Because of the short duration of
the tasks, however, the superior efficiency of the code at O2
and O3 leads to an order of magnitude higher throughput com-
pared with that of O0. UTS shows nearly perfect scaling, with
performance of O2, O3, and ADLB nearly indistinguishable.
O3 and ADLB were more economical with data operations
than O2, but throughput was limited by computation of the
UTS update hash function rather than work distribution. At
lower optimization levels, input data to the UTS function
quickly became a bottleneck and prevented further scaling.
Our simple recursive UTS implementation reached a scale 4.7x
larger than the previous largest reported UTS run, which was
achieved by an X10 work-stealing algorithm [30].

The strong scaling results for Annealing show O0 and O1
failing to scale beyond a certain point as data operations
became a bottleneck, while O2 and O3 continued scaling up
until the point when work was relatively scarce. Figure 10f
shows that O3 suffered a collapse in throughput when moving
to 32,768 cores that was not suffered by O2, despite O2 using
slightly more runtime operations. Work is underway to fix this
problem, which we believe is caused by workers frequently
transitioning from busy to idle in such a manner that the work
stealing algorithm causes excessive congestion.

STC at O3 is competitive with the hand-coded ADLB base-
lines. In the case of UTS, O3 uses measurably more runtime
operations, but this does not impact throughput to any great
extent. In some cases it scales better because STC’s dynamic,
recursive partitioning of foreach loops is more friendly to the
runtime’s work-stealing algorithms than the static partitioning
used by the ADLB baseline. In the Wavefront benchmark, O3
gradually overtook the ADLB baseline: the optimized code
was less efficient but more scalable because management of
data dependencies was automatically balanced between nodes.

C. Contribution of Individual Optimizations

To illustrate better how each optimization pass described
can contribute to overall speedup, we analyzed the incremental
contribution of each optimization level in smaller-scale runs
of the Annealing benchmark. The results in Figure 12 show
that finalized variable analysis and hoisting were effective at
eliminating shared data and in hoisting shared array accesses



(a) Sweep weak scaling: 0.2 ms tasks (b) Sweep weak scaling: 0.5 ms tasks (c) ReduceTree scaling: 0 s tasks

(d) UTS scaling (e) Wavefront: 5ms tasks
(f) Annealing strong scaling: 256 anneal-
ing processes × 2000 tasks per objective
function × 5 parameter updates

ADLB O0 O1 O2 O3 Parallelism

Fig. 10: Application speedup and scalability at different optimization levels. X axes show scale in cores. Primary Y axes show
application throughput in application-dependent terms. Secondary Y axes show problem size or degree of parallelism where
applicable.
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Fig. 12: Runtime operation counts, measured in thousands of operations, in Annealing run, showing incremental impact of
each optimization pass enabled. Each bar includes previous optimizations.

out of loops. FVA is intimately connected to monotonic vari-
ables, while hoisting is a member of a widely used family of
optimization techniques, a fact that clearly illustrates how both
conventional and dataflow-specific optimizations are required
for data-driven task parallelism. These optimizations also rely
on basic optimizations, particularly VN and DCE to clean up
and remove redundancy after major transformations of the IR.

In other benchmarks, other optimizations proved to be
critical. In UTS, the task coalescing optimization was able to
transform the dataflow logic of the UTS tree search procedure
into purely recursive function calls with all intermediate data
passed directly to child tasks. Wavefront benefited greatly from
loop unrolling, which allowed loads of neighboring array cells
to be shared by multiple loop iterations.

D. Memory Management Overhead

We also performed experiments to understand the effective-
ness of reference counting optimization, in particular to un-
derstand the overhead of automatic memory management and
how much it could be mitigated. We ran scaled-down instances

Fig. 13: Impact of unoptimized and optimized reference count-
ing for memory management, normalized to the total count of
runtime operations without memory management. Each bar
includes previous optimizations.

of the benchmarks under multiple configurations: Off, where
read reference counts are not tracked and memory is never
freed; Unopt, where all reference counting optimizations are
disabled; and different levels where reference counting opti-
mizations are incrementally enabled. All other optimizations
were enabled; hence, for some benchmarks shared data was



optimized out in all cases. Figure 13 shows that the reference
counting optimizations are effective: the overhead measured
in operations from by automatic memory management after
optimization is at most 12.2%.

V. RELATED WORK ON COMPILER OPTIMIZATION

Other authors have studied optimization of parallel and
distributed applications using a wide range of techniques. In
this section we describe some closely related work.

Hardware data-flow-based languages and execution models
received significant attention in the past, but there is a resur-
gence of interest in hardware-based [15], [23] and software-
based [6], [7], [10], [25], [29] dataflow models because of their
ability to expose parallelism, mask latency, and enable fault
tolerance. Previous work has optimized data flow languages
with arrays: SISAL [26] and Id [32]. Both have similarities to
Swift/T; but emphasize generating low-level machine code. Id
targets shared-memory dataflow machines, while STC targets
a distributed software runtime. The SISAL runtime used fork-
join parallelism, so compilation necessarily eliminated some
potential parallelism. In STC, fully dynamic task parallelism
required new techniques, such as task-graph-based transfor-
mations, and more complex reference counting algorithms.

Research on the PGAS family of programming lan-
guages [1], [4], [30] has resulted in optimization techniques
for explicitly parallel programs executing in a partitioned
global address space with async/finish synchronization, which
contrasts with our work’s focus on implicitly parallel programs
without explicit partitioning and dataflow-driven synchroniza-
tion. The main similarities are the first-class IR constructs that
represent remote or asynchronous execution, and optimizations
that understand and optimize these constructs.

Other authors have described parallel intermediate represen-
tations (IRs), which typically are sequential IRs with parallel
extensions [39]. STC’s IR semantics are, in contrast, fully
based on a data-driven task parallel execution model with
asynchronous execution and monotonic data structures built-in.
This allows for aggressive optimization through exploitation of
monotonicity and loose rules on statement reordering.

Related compiler techniques have been proposed in other
contexts. Task creation and management overhead is a core
challenge of task parallelism. Zhao et al. reduce this overhead
by safely eliding or reducing strength of synchronization
operations [40]. Arandi et al. show benefits from compiler-
assisted resolution of task data dependencies with a shared-
memory runtime [2]. Jagannathan’s communication-passing
transformation [13] is similar in spirit to STC’s task pushdown,
moving operations to execute at the place and time their
inputs are produced. Previous work has addressed compile-
time reference counting optimization [14], [24] but these
techniques for sequential or explicitly parallel languages are
substantially different from STC’s.

Other work outside the compiler optimization literature has
focused on optimization of distributed data-dependency driven
workflows. This work has focused on scheduling the workflows
with constraints of resource availability and data movement

cost [27], [38], typically assuming that a static task graph is
available. We focus on finer-grained parallelism in conjunction
with a high-level, more general programming model, with the
short duration of tasks making runtime overhead, in contrast,
a dominant concern.

VI. FUTURE WORK

The intermediate representation and optimization techniques
that we describe in this paper can provide the foundation
for further research, both in compiler optimization, and in
combined runtime/compiler approaches. For example, oppor-
tunities exist to implement furthe techniques from the ex-
tensive compiler optimization literature. More sophisticated
control and data flow analyses could bring further incremental
improvements to many applications, while more specialized
techniques, such as for affine nested loops [5], would aid
certain applications such as wavefront.

The compiler infrastructure presents opportunities for cross-
layer optimization between the compiler and the distributed
runtime. Past work [33] has identified opportunities for run-
time systems to optimize data placement and movement for
data-intensive applications given hints about future workload,
which could be provided by compile-time analysis.

VII. CONCLUSION

We have described a suite of optimization techniques
that can be applied to improving efficiency and scalability
of distributed-memory task-parallel programs expressed in a
high-level programming language. We applied these tech-
niques here to a particularly challenging case: high-level im-
plicitly parallel scripts in the Swift/T programming language,
but they are more generally applicable to a range of task-
parallel programming models.

Our performance results support two major claims: that
applying a wide spectrum of compiler optimization tech-
niques can greatly improve performance and that compiler
optimization can allow high-level implicitly parallel code to
drive fine grained task-parallel execution at massive scales,
rivaling the efficiency and scalability of hand-written parallel
coordination code for common patterns of parallelism at scales
from tens of cores to half a million cores for a range of task-
parallel application patterns including iterative optimization,
tree search, and parallel reductions.
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