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I. INTRODUCTION

Application frameworks and domain-specific languages
(DSLs) (both here called high-level tools) aid developers when
developing programs for next-generation, highly concurrent
systems. An increase in the use of high-level tools, however,
creates a problem: the prevention and detection of defects in
the high-level program. Traditional debuggers, designed for
operating on highly popular, line-oriented languages (C, C++,
Java), will operate at too low a level to detect defects with
the use of the high-level tool. With regard to scale, while line-
oriented tools are expected to remain viable on foreseeable
systems, the ability of the human user to effectively use these
tools at larger scale is questionable.

Logging is a typical approach to monitoring and detecting
problems in program execution. At present, logging faces
similar challenges to traditional debuggers: utility and scale.
In an application built in a high-level tool, logging must also
be efficient and high-level. Low-level logging, say, at the
messaging level, will be too complex for users of high-level
tools. Thus, the tool builders must integrate effective, high-
level logging functionality.

Here, we consider the use of the Message Passing Envi-
ronment (MPE) [1] logging applied to Swift [2] programs.
This case study presents a model for effectively detecting
programming defects based on the MPE logs in a manner
appropriate for Swift programs (not MPI programs in general).

II. COMPONENTS: SWIFT AND MPE

1 data d[];
2 foreach i in [0:N-1]
3 {
4 data a = A(i);
5 data b = B(a);
6 data c = C(a);
7 d[i] = D(b,c);
8 }
9 output(analyze(d));
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Fig. 1. Simple data flow application.

Swift is a naturally concurrent scripting language designed
to ease the development of scientific applications built from
large numbers of calls into existing programs and libraries [2].
Although its initial implementation was designed to run on a
single submit host and manage external execution on the grid,
its new implementation, Swift/Turbine (Swift/T), generates an

MPI program from the user script via two libraries, Turbine [3]
and the Asynchronous Dynamic Load Balancer (ADLB) [4].
Turbine manages the dataflow semantics of the Swift language
in a scalable, distributed-memory framework. ADLB manages
tasks resulting from the execution of the user script logic.
A simple Swift program is diagrammed in Fig. 1. In this
example, the implicitly parallel semantics of Swift are evident.
Each iteration of the foreach loop happens concurrently. For
each iteration, variables a, b, and c are allocated. Functions
A, B, C, and D are linked to external, native user code. (Swift
also supports functions.) Each task A is immediately ready to
run; each task B, C waits for the intermediate output of A; D
waits for intermediates b, c; analyze and output wait for
the completion of all insertions into array d. Swift has been
shown to be capable of handling extremely large use cases,
including the use of 128K cores on the Blue Gene/P.

MPE provides a scalable system for logging, profiling, and
visualizing MPI program executions. MPE is implemented as a
pure MPI library; it may be used by any MPI implementation.
MPE is often used to trace usage of the MPI library, for
example, to track and visualize message patterns. It may be
extended by the user to track arbitrary events and states. MPE
limits impact on applications and achieves good performance
by buffering events and I/O locally in the MPI process.

MPE has been previously considered for use as a defect
investigation tool; however, as it is an library built on MPI,
it is not more reliable than the application program or the
system implementation. Typical program defects in traditional
languages will cause the termination of the whole application;
MPE will not be able to complete writing the log. In this work,
we seek to find defects in the use of the high-level tool, errors
that will not obviate the production of the MPE log.

III. MODEL FOR DEFECT INVESTIGATION

Logs are produced from ADLB programs linked with MPE
in multiple ways. First, ADLB operations from workers may
be logged in a manner analogous to that for MPI operations;
thus, calls to the task put and get functions are logged.
Second, the time in user code may be measured; this feature
allows for the user to observe the length of time in user work
functions outside ADLB. Third, MPE solo events may be
issued; these contain a timestamp, a type, and a user binary
byte sequence (often a string). This third event type is the



Fig. 2. Jumpshot visualization for PIPS use of ADLB in Swift/T.
This figure zooms in on representative task transitions.

Green: PIPS task computation; Red: Store variable; Yellow: Notification (via control task); Blue: Get next task;
Orange: Retrieve variable; Black: Server process (handling of control task is highlighted in yellow)

focus of our present work: we intend to encode program trace
information in these events.

The Swift/T project uses ADLB features pervasively and
added multiple features to support data-dependent execu-
tion. Thus, additional calls to store, retrieve, and
subscribe to data are available. As a result, a trace of
program execution may be represented in Jumpshot as shown
in Figure 2 (MPE log from a run of a PIPS-related Swift/T
application [5]). As shown in the figure, worker processes
spend the bulk of time in user task computation. The transition
between tasks is shown as the brief multi-colored regions; the
length of the transition may be considered Swift/T overhead.
At the end of a task, resultant variables are stored, notifications
are issued, a new task is obtained, its input variables are read,
and work resumes. This illustrates a load-store, Von Neumann-
style computing model for distributed-memory task-parallel
programs generated by a high-level functional language.

Diagnosing defects by querying the log begins in one of
the following cases: Bug 1) An unintended user task is issued;
Bug 2) An intended user task is not issued; Bug 3) Deadlock
occurs. In the hierarchical, task-parallel Swift model, defects
in native user code is treated as a separate problem.

Consider Bug 1. In this case, the user would have detected
that a call to the native code was made in error through
some external mechanism. To obtain information about the
programming error in the Swift script, a stack trace may be re-
constructed from the MPE log as follows. As shown in Fig. 1,
ADLB tasks are associated with Swift leaf functions; that is,
certain user-specified Swift functions are implemented as calls
into user code (written in C/C++/Fortran, etc.) to be executed
as ADLB tasks. Swift composite functions make up a call stack
in a conventional, concurrent manner, starting from the user
Swift main() (not the C or system main()). Execution of
Swift composite functions is realized as execution of ADLB
tasks, which allows for high concurrency and load-balancing.
ADLB task execution is already logged; thus, a record of these
executions is readily available in the log.

Given an erroneous ADLB task, and associated events in the
MPE log, the user is able to use Jumpshot to visualize the task.

The task identification also allows the user to obtain the Swift
composite function context from which the task was issued.
Given the Swift composite function, stack variables may be
identified, and their values may be inspected. The parent stack
frame may also be identified, and the process of inspecting
stack variables may be repeated up to Swift main().

Bug types 2 and 3 may be investigated in a similar manner
(condensed here for space consideration). Bug type 2 would
likely be investigated starting from main() and working in
the opposite direction in the call stack until the defect that led
to erroneous execution was identified. Bug type 3 would likely
present itself as Bug type 2, however, the Swift/T runtime
issues warnings for incomplete execution of the program and
exits with a valid log. The user could trace the call stack from
main() to find the variables that form a cyclic dependency.

IV. SUMMARY

In this work, we presented the use of MPE for detecting
defects in parallel programs written using high-level tools
relevant to the application framework ADLB and the high-
level language Swift/T.
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