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ABSTRACT
Scientific applications are often complex collections of many
large-scale tasks. Mature tools exist for describing task-
parallel workflows consisting of serial tasks, and a variety of
tools exist for programming a single data-parallel operation.
However, few tools cover the intersection of these two mod-
els. In this work, we extend the load balancing library ADLB
to support parallel tasks. We demonstrate how applications
can easily be composed of parallel tasks using Swift dataflow
scripts, which are compiled to ADLB programs with perfor-
mance comparable to hand-coded equivalents. By combin-
ing this framework with data-parallel analysis libraries, we
are able to dynamically execute many instances of a parallel
data analysis application in support of a parameter explo-
ration workload.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent
Programming Structures

General Terms
Design, Performance

Keywords
MPI, ADLB, Swift, parallel tasks, dataflow

1. INTRODUCTION
Many application workloads consist of multiple types of

computation, as well as a significant mixture of procedures,
such as I/O and validation. In the case of scientific simu-
lation, computation is often followed by analysis and visu-
alization, which may indicate that subsequent simulation is
necessary. Large collections of tasks may be constructed to
perform parameter exploration studies, Monte Carlo runs,
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optimization, uncertainty quantification, and other ensem-
ble computations. Such applications may be elegantly ex-
pressed as a dataflow execution, in which a task is eligible
to run when its requisite input data is ready. This model
allows for implicit concurrency because data dependencies
are explicit.

MPI enables the concurrent execution of multiple coop-
erating multiprocessing codes, each of which can have a
separate communication context shared with only the MPI
processes executing that code. MPI represents these con-
texts with communicators that typically form a tree hierar-
chy, starting from an initial world communicator, that en-
compasses all processes. Given a communicator, new child
communicators can be created and passed to libraries for
their exclusive use, allowing an application to be constructed
through composition of existing parallel libraries and codes.

Communicators also provide a grouping capability that
enables applications to form MPI process teams to process
parallel subcomputations. Traditional MPI communicator
creation was collective on a full parent communicator, in-
cluding those processes that would not be members of the
new communicator. This additional synchronization limited
the ability of applications to form new process teams dy-
namically. To address this gap, the MPI 3.0 standard [14]
added a new group-collective communicator creation rou-
tine [5] that is collective over only those processes that will
be members of the new communicator. Group-collective
communicator creation relaxes the synchronization involved
in team formation, enabling the development of composite
applications that dynamically generate teams to tackle in-
dividual computational tasks.

This core technology enables many new application com-
position models, as the low-level capabilities exposed are
extremely powerful. However, the highly dynamical model
enabled by group-collective communicator creation makes
communicator management and data management a more
significant programming challenge. In particular, applica-
tion programmers must consider: 1) allocating processes
to new communicators, and 2) moving data between loca-
tions in the parent space to the child library space. Note
that while previous MPI communicator management also re-
quired data management, the dynamic nature of the new call
requires more flexible data access mechanisms. A higher-
level framework for composition of MPI libraries into a log-
ical application could make the benefits of the new commu-
nicator creation calls accessible to a larger range of applica-
tions.

In this work, we extend a master-worker system and a
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Figure 1: Dataflow program consisting of data-
parallel tasks.

high-level programming model to address these challenges
in a reusable way. This model is an ideal fit for master-
worker systems that allocate tasks (work units) to worker
processes as workers become available. It also motivates the
use of dataflow programming to coordinate control from one
library call to the next. The Asynchronous Dynamic Load
Balancer (ADLB) [8] is a master-worker system that pro-
vides multiple high level features; in this work, we extend it
to use noncollective communicator creation for user-specified
parallel tasks. Swift [17] is a scalable dataflow language and
runtime engine; in this work, we extend it to use the ADLB
parallel tasks feature. In this framework users may compose
multiple parallel and/or sequential library calls in a high-
level script that compiles into an ADLB/MPI program that
manages a global data store and performs data-dependent
processing.

The remainder of this paper is organized as follows. In
Section 2, we provide background on the technologies used
here and consider related work. In Section 3, we describe
the implementation of the Swift parallel tasks feature and
its novel use of MPI 3.0. In Section 4, we evaluate the imple-
mentation through synthetic benchmarks and an application
in data-parallel particle tracing application. In Section 5, we
offer summarizing remarks and briefly discuss future work.

2. BACKGROUND AND RELATED WORK
The effective combination of dataflow processing with data-

parallel libraries integrates multiple concepts, including mo-
tivating requirements in parallel data analysis and visual-
ization and other application areas, the ability of Swift to
support high-performance dataflow processing, and the use
of new MPI 3.0 routines for dynamic communicator creation.

2.1 Parallel Data Analysis and Visualization
As Figure 1 illustrates, the analysis and visualization of

data computed from large-scale numerical simulations is a
complex process. Multiple analysis steps are interconnected
in a dataflow graph in which scheduling and execution are
dynamic and asynchronous. Each analysis node in the graph
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Figure 2: Allocation of eight blocks to processors.
Blocks are colored by the process to which they be-
long.

itself is both complex and data-intensive and may require
large-scale cluster or HPC resources and parallel libraries.
The increasing complexity of analysis algorithms along with
the need for scalability and performance has led to the com-
position of several libraries to accomplish a single task.

Figure 1 spotlights two such libraries, OSUFlow [13] and
DIY [12, 11], that are used in our performance evaluation
in Section 4. Together with MPI, this software stack pro-
vides a data-parallel infrastructure for the parallel advection
of particles through a vector field for the purpose of visu-
alizing streamlines or pathlines through the field. These li-
braries efficiently perform static SPMD data-parallelism at
very large scales, but they do not include any mechanisms
for the load balancing or dynamic scheduling needed to ex-
ecute the overall flow graph. We use Swift for this purpose.

2.2 Other Relevant Parallel Applications
Many similar parameter exploration applications could

also be approached with this model. Many parallel computa-
tions are configurable in one or more run time parameters,
perhaps the most common being the number of MPI pro-
cesses. In spatially decomposed data-parallel computations,
the number of subdomains (blocks) into which the domain
is decomposed is another common parameter. Some appli-
cations do not require the number of blocks to equal the
number of processing elements, with several blocks residing
on each processing element. (See Figure 2.)

Running a parameter exploration or search in this space
allows investigators to find the best MPI and decomposition
parameters to use later in bigger ensemble runs. Other appli-
cations that require good configuration parameters that may
be approached by our model include: 1) selecting the opti-
mal radix in the Radix-k image composting algorithm [10],
2) finding the best MPI-IO tuning hints [7], or 3) testing
code transformations for linear algebra kernels [3].

2.3 High-performance Dataflow Processing
Swift is an implicitly parallel language for functional dataflow

processing. Swift has C-like syntax and many features that
have made it successful for many scientific application use
cases [15]. Swift was originally implemented as a work-
flow language for distributed computing on grids [18] and
clouds [6]. It has recently been reimplemented from scratch [17]
to generate an MPI program that uses a scalable dataflow
library, Turbine [16], to manage data dependencies and the
ADLB load balancer [8] to distribute tasks.

In Swift, all variables are single-assignment futures and



may be of many primitive types, such as int, string, or
blob (arbitrary bytes). These are stored in a globally-accessible
data store. A statement z=f(x,y); triggers the execution
of f when variables x and y are set, then sets z. Swift can
call into functions implemented in external code libraries or
as command-line applications. For example, f could refer to
a function in an external library. Swift programs are com-
posed of these leaf functions as well as traditional program-
ming constructs such as functions, if statements, and for

loops. The novel feature presented in this paper is support
for parallel external functions that are executed coopera-
tively by many processes as a parallel task, implemented by
using MPI 3.0.

2.4 Dynamic Communicator Creation in MPI
The MPI 3.0 standard introduces the

MPI_Comm_create_group (CCG) routine for group-collective
communicator. Dinan et al. demonstrated that this func-
tionality can be implemented on top of existing MPI 2.0
functionality through recursive intercommunicator creation
and merging [5]. While this approach can provide the same
functionality, it requires log(P ) communicator creation and
merging steps. Direct implementation of the functionality
provides greater efficiency than do existing MPI-2 com-
municator creation operations [4]. The impact of dynamic
team formation on top of CCG was demonstrated in the
context of load balancing a Markov chain Monte Carlo
simulation [1].

In addition to relaxing synchronization, CCG defines a
new semantic with respect to threads and collective routines.
Previously, on a given communicator, collective operations
could be called simultaneously only by a single thread per
process. CCG relaxes this restriction by requiring an addi-
tional tag argument to distinguish the calls made by different
threads. The ability to perform multiple CCG calls concur-
rently from different threads is critical to enabling flexible,
dynamic team formation for MPI applications that utilize
threads (e.g. via OpenMP) within a node.

3. IMPLEMENTATION
The CCG feature is an ideal fit for master-worker systems

that allocate tasks (work units) to worker processes as work-
ers become available. In many applications, it is not known
how long a given task will take or how many processes will
be requested for each task, so it is not possible to schedule
work units in advance. With noncollective communicator
creation, a master may allocate a subset of available work-
ers and instruct them to assemble into a communicator to
operate on a user task. We implemented features in Swift
to support such use.

At runtime, a Swift program operates as a normal MPI
program and does not use threads. As shown in Figure 3, the
Swift program is translated [2] into a portable representation
called “Turbine code,” which includes references to requisite
supporting tools and user libraries. This code is executed ev-
erywhere in the normal MPI SPMD manner; however, since
it is an ADLB program, the first step is to segregate the
ADLB services from workers. A number of ADLB work-
ers are allocated as “engines”, which process Swift dataflow
logic. The ability of Swift to operate over multiple engines is
a critical feature for scalability in terms of logic processing,
task transmission to multiple ADLB servers, and memory
space. The ADLB servers and Swift engines typically make

Figure 3: Runtime configuration of Swift program
with parallel tasks.

up about 1% of the system. Finally, Swift “workers” simply
execute leaf tasks as they are produced by Swift dataflow
processing - this is where bulk user processing is performed.
As diagrammed, workers may be dynamically grouped into
communicators to execute parallel tasks.

ADLB is a master-worker system that provides multiple
high level features, including task priorities, the ability to
specify task location, task types, etc. We extended the
ADLB task Put call to support a parallelism field, indicating
the number of processes to allocate for the task. ADLB al-
locates the required number of workers and assembles them
into a communicator before launching the task. Workers
perform the task Get call, which has been extended by
this work to additionally return an output communicator.
For traditional single-process ADLB tasks, this is simply
MPI_COMM_SELF; for parallel tasks, it is the communicator
created by MPI_Comm_create_group.

We extended the Swift leaf function definition statement
with the @par annotation, which declares that the function
may be called as a parallel task. The caller applies the an-
notation with the desired number of processes for the new
communicator, for example, z = @par=8 f(x,y);. If the
definition of f did not have the @par annotation, a compile-
time error occurs.

4. PERFORMANCE
To demonstrate the utility of the new features, we carried

out synthetic benchmarks and an application case study. All
measurements were performed on the Argonne Leadership
Computing Facility Eureka visualization system, which con-
tains 100 nodes, each containing two 64-bit 4-core Intel Xeon
E5405 processors at 2 GHz, with 32 GB RAM, running on a
GPFS filesystem shared with a large Blue Gene/P system.
Eureka is designed to perform graphics processing on results
from the Blue Gene/P. Eureka was chosen because we were
readily able to use an MPI 3.0 implementation from source.
We ran with MPICH 3.0.3; performance analysis was per-
formed using MPE 1.3.0, Jumpshot, and various MPE log
processing tools.

4.1 Synthetic Measurements
Our synthetic measurements directly measure the over-

head by executing short-lived 0-second and 1-second tasks
that strain our system. Such short tasks far exceed the per-
formance requirements of our real application case, in which
tasks execute for hundreds of seconds. We compare three im-



Figure 4: Parallel tasks task rate result for 0-second,
fixed-parallelism tasks.

Figure 5: Parallel tasks utilization result for 1-
second, fixed-parallelism tasks.

plementations: a hand-coded MPI benchmark written in C,
a hand-coded ADLB benchmark, and a Swift benchmark.
The MPI implementation is a simple for loop around the
communicator create/free calls; the ADLB implementation
is a simple for loop of tasks puts, with all workers execut-
ing parallel tasks; and the Swift implementation is a simple
parallel foreach loop around calls to the task.

We use two metrics to evaluate the implementations: task
rate and utilization. Task rate is number of parallel tasks
that may be executed per unit time. This incurs the cost of
repeatedly constructing the task in the given programming
model and producing the new communicator with MPI. Uti-
lization is the amount of CPU time spent in the 1-second
task over total CPU time; it is not applicable to the 0-second
tasks. Each measurement is the average of 10 runs.

Figure 4 shows the task rate result for the MPI, ADLB,
and Swift benchmark implementations of 0-second tasks.
For each process count (in ADLB and Swift, we measure
only the worker processes), MPI_COMM_WORLD is split into 8
equal sized communicators that are created and immedi-
ately discarded. Each implementation produces hundreds
of multi-process tasks/s. The ADLB implementation seems
to be slightly faster, likely because the MPI implementa-
tion launches each round of tasks in lockstep, while ADLB
distributes tasks to processors as they become available.

Figure 5 shows the utilization result for the MPI,
ADLB, and Swift benchmark implementations. Again,

Figure 6: Parallel tasks utilization result for 1-
second, varying-parallelism tasks.

MPI_COMM_WORLD is split into 8 equal sized communicators,
but in this case the communicator is used to perform a sim-
ulated 1-second computation. The total time spent in com-
putation is divided by the total process time to obtain a
utilization result. Utilization is high for each system. This
shows that the Swift model is usable for application tasks in
the seconds timescale, as it does not degrade performance.

Figure 6 shows the utilization result for the ADLB, and
Swift benchmark implementations. No hand-coded MPI im-
plementation was produced (expressing “run whatever fits”
would essentially be a rewrite of the ADLB parallel tasks
feature). This time, MPI_COMM_WORLD is split into varying-
sized communicators; for N processes total, task communi-
cator sizes were 1, 2, 4, ..., N . Again, the communicator
is used to perform a simulated 1-second computation. The
total time spent in computation is divided by the total pro-
cess time to obtain a utilization result. Again, utilization
is acceptable for tasks in the seconds timescale and above,
although there is room for improvement.

4.2 Particle Tracing Parameter Exploration
This section demonstrates the utility of our model by pre-

senting a complete application: an ensemble of parallel par-
ticle tracing computations making up a parameter explo-
ration. The OSUFlow code visualizes streamlines of advect-
ing particles in a 3D vector field. For example, Figure 7 is
such a visualization of the coolant flow in the plenum of a
nuclear reactor [9]. Our objective is to search the parameter
space and arrive as quickly as possible at the configuration
that produces the shortest run time for the parallel particle
advection problem.

OSUFlow is a data-parallel program with some number of
MPI processes (np) and each process having some number of
blocks (bp). For a given problem and machine, the shortest
run time will be found somewhere within (np× bp), usually
not the minimum or maximum of either parameter (those
locations produce over- or under-decomposed configurations
with too much or too little computation per block with re-
spect to the communication overhead between blocks). Even
if an analytical model exists for predicting the optimum con-
figuration, an exploration of the parameter space is usually
required in order to create or tune such a model. Such pa-
rameter exploration problems can be performed with the
hybrid data-parallel dataflow model we have developed.

Figure 8 illustrates how data-parallel libraries can be com-



Figure 7: Streamlines representing particles in sim-
ulated fluid flow.

Figure 8: Exploration of the two-dimensional search
space of (np × bp) (number of processes × blocks
per process). Each task in that space consists of a
data-parallel program: the OSUFlow parallel parti-
cle tracing and flow visualization library, which is
built on top of the DIY parallel analysis library,
which in turn is built on top of MPI. Our system
makes such composition of libraries possible and ex-
ecutes many such tasks in parallel. One task, 128
processes and 8 blocks per process, is highlighted.

posed into a parameter optimization problem for parallel
particle advection. Swift with ADLB allows the parallel ex-
ploration of many configurations in the parameter space in
parallel. Each task, such as the highlighted one, is a data-
parallel program that can be composed of numerous other
libraries. The parameter space can be explored in many dif-
ferent ways, depending on the search algorithm encoded in
the Swift user program.

4.2.1 Performance Results
The implementation of the Swift script to perform the

parameter sweep is shown in Figure 9. The parallel foreach
loops construct the configuration parameters. The syntax
[i:j] constructs the array of integers between i and j for
iteration; these are used as exponents (2**x) to produce the
actual inputs.

Figure 10 shows the utilization of the OSUFlow script
running on 518 processors. Black regions indicate OSUFlow

1 // Define call to OSUFlow feature MpiDraw
2 @par (float t) mpidraw(int bf) "mpidraw";
3
4 main {
5 foreach b in [0:7] {
6 // Block factor: 1-128
7 int bf = round(2**b);
8 foreach n in [4:9] {
9 // Number of processes/task: 16-512

10 int np = round(2**n);
11 float t = @par=np mpidraw(bf);
12 printf("RESULT: bf=%i np=%i -> time=%0.3f",
13 bf, np, t);
14 }}}

Figure 9: Swift code for parameter sweep over
OSUFlow configurations.

Figure 10: Jumpshot view of OSUFlow utilization.

native code executing, blue indicates Swift/ADLB control
communication, and white regions are gaps.

The desired result of the script is to explore the parameter
space in order to pick good parameters for parallel particle
tracing with OSUFlow. Thus, the performance results are
depicted by a contour plot in Figure 11. Blue regions are
the shortest runtimes and best performance. This confirms
the finding in [13] that, in general, higher values of bp lead
to shorter run times, but in this work, the new dataflow
programming model enabled the testing of many more con-
figurations much faster than in that earlier work.

5. SUMMARY
In this work, we presented a motivating case for the use of

dataflow programming to control executions of parallel tasks
constructed with new MPI 3.0 techniques. We presented
background on the technologies used and how they were
integrated into the high-level Swift model. We presented
synthetic performance results as an initial investigation into
the performance impact of the Swift model. Additionally,
we demonstrated a complete application consisting of many
data-parallel visualization processing tasks of varying size.

In future work, we will improve our use of MPI 3.0 features
at the micro-scale so that Swift may be used on applications
with even finer-grained tasks. We will also investigate op-
portunities to apply scheduling and prioritization in order
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Figure 11: Performance for OSUFlow under varying
configurations. The color indicates the run time:
blue represents the faster cases.

to improve utilization at the macro-scale. Ultimately, we
intend to use Swift as a way to construct composite appli-
cations consisting of large numbers of tasks of varying size,
to support scientific computing on the largest computing
systems.
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