
Turbine: A distributed-memory dataflow engine
for extreme-scale many-task applications

Justin M. Wozniak
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL USA
wozniak@mcs.anl.gov

Timothy G. Armstrong
Computer Science

Department
University of Chicago

Chicago, IL USA
tga@uchicago.edu

Ketan Maheshwari
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL USA
ketan@mcs.anl.gov

Ewing L. Lusk
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL USA
lusk@mcs.anl.gov

Daniel S. Katz
Computation Institute

University of Chicago &
Argonne National Laboratory

Chicago, IL USA
d.katz@ieee.org

Michael Wilde
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL USA
wilde@mcs.anl.gov

Ian T. Foster
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL USA
foster@mcs.anl.gov

ABSTRACT
Efficiently utilizing the rapidly increasing concurrency of
multi-petaflop computing systems is a significant program-
ming challenge. One approach is to structure applications
with an upper-layer of many loosely-coupled coarse-grained
tasks, each comprising a tightly coupled parallel function or
program. “Many-task” programming models such as func-
tional parallel dataflow may be used at the upper layer to
generate massive numbers of tasks, each of which generates
significant tighly-coupled parallelism at the lower level via
multithreading, message passing, and/or partitioned global
address spaces. At large scales, however, the management
of task distribution, data dependencies, and inter-task data
movement is a significant performance challenge. In this
work, we describe Turbine, a new highly scalable and dis-
tributed many-task dataflow engine. Turbine executes a
generalized many-task intermediate representation with au-
tomated self-distribution, and is scalable to multi-petaflop
infrastructures. We present here the architecture of Turbine
and its performance on highly concurrent systems.

Categories and Subject Descriptors
D.3.3e [Programming Languages]: Concurrent program-
ming structures
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1. INTRODUCTION
Developing programming solutions to help applications

utilize the high concurrency of multi-petaflop computing
systems is a challenge. Languages such as Dryad, Swift,
and Skywriting provide a promising direction. Their im-
plicitly parallel dataflow semantics allow the high-level logic
of large-scale applications to be expressed in a manageable
way while exposing massive parallelism through many-task
programming. However, current implementations of these
languages limit the evaluation of the dataflow program to
a single-node computer, with resultant tasks distributed to
other nodes for execution.

We propose here a model for distributed-memory evalua-
tion of dataflow programs that spreads the overhead of pro-
gram evaluation and task generation throughout an extreme-
scale computing system. This execution model enables func-
tion and expression evaluation to take place on any node of
the system. It breaks parallel loops and concurrent func-
tion invocations into fragments for distributed execution.
The primary novel features of our workflow engine, use of
distributed-memory and message passing, enable the scala-
bility and task generation rates needed to efficiently utilize
future systems.

We describe the design and implementation of Turbine, a
distributed evaluation model for implicitly parallel dataflow
programs, motivating it with requirements projected from
scientific applications. This paper demonstrates that Tur-
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bine can execute Swift programs on large-scale, high perfor-
mance computing (HPC) systems such as the Blue Gene/P.
Our preliminary implementation shows promising scalability
curves processing synthetic and useful application patterns.

1.1 Context
Exaflop computers capable of 1018 floating-point opera-

tions/s are expected to provide concurrency at the scale of
O(109) on O(106) nodes [3]; each node will contain extremely
high levels of available task and data concurrency [26]. Such
extreme-scale systems will enable and demand new problem-
solving methods that do not follow today’s dominant single
program, multiple data (SPMD) paradigm but instead will
involve hierarchical programming models [28]. Such a model
could be based on composing a logical application from a
time-varying number of interacting tasks. Methodologies
such as rational design, uncertainty quantification, param-
eter estimation, and inverse modeling all have this many-
task property. All will frequently have aggregate computing
needs that require exascale computers [27].

Running many-task applications efficiently, reliably, and
easily on large parallel computers is challenging. The many-
task model may be split into two important processes: task
generation, which evaluates a user program, often a dataflow
script, and task distribution, which distributes the resulting
tasks to workers. The user work is performed by leaf func-
tions, which may be implemented in native code or as exter-
nal applications. Leaf functions themselves may be multi-
core or even multinode tasks. This computing model draws
on recent trends that emphasize the identification of coarse-
grained parallelism as a first distinct step in application de-
velopment [19, 31, 33]. Additionally, applications built as
workflows of many tasks are highly adaptable to complex,
fault-prone environments [9].

1.2 Current approaches
Currently, many-task applications are programmed in two

ways. In the first, the logic associated with the different
tasks is integrated into a single program, and the tasks com-
municate through MPI messaging (where they exist in dif-
ferent memory spaces) or function calls (as in the parallel
version of the Common Component Architecture, CCA [4],
where components exist in the same memory space.) This
approach uses familiar technologies but can be inefficient
unless much effort is spent incorporating load-balancing al-
gorithms into the application. Moreover, the approach can
involve considerable programming effort if multiple compo-
nent codes have to be tightly integrated.

Load balancing libraries based on MPI, such as the Asyn-
chronous Dynamic Load Balancing Library (ADLB) [18], or
on Global Arrays, such as Shared Collections of Task Ob-
jects (Scioto) [10], have recently emerged as promising solu-
tions to aid in this approach. They provide a master/worker
system with a put/get API for task descriptions, thus allow-
ing workers to add work dynamically to the system. How-
ever, they lack a comprehensive programming model, data
model, and other features required for high productivity pro-
gramming.

In the second approach, a script or workflow is written
that invokes the tasks, in sequence or in parallel, with each
task reading and writing files from a shared file system. Ex-
amples include Dryad [15], Skywriting [20], and Swift [34].
This approach is convenient for the user, particularly when

1 Model m[];
2 Analysis a[];
3 Validity v[];
4 Plot p[];
5 int n;
6 foreach i in [0:n] {
7 // run model with random seed
8 m[i] = runModel(i);
9 a[i] = analyze(m[i]);

10 v[i] = validate(m[i]);
11 p[i] = plot(a[i], v[i]);
12 }

model
output

model
output

intermediate
data

intermediate
data plotsplots

modftdockmodftdockmodftdock

modftdockmodftdockmodftdockNx

modftdockmodftdockmodftdockmodel plot

analyze

m a,v p

validate

seed i

Figure 1: Swift example and corresponding dataflow
diagram.

each task is a distinct executable program. Performance
can be poor, however, since existing many-task scripting
languages are implemented with centralized evaluators that
cannot sustain the high overall task rate necessary to effi-
ciently utilize O(106) cores.

1.3 Turbine: a scalable dataflow engine
Consider the example application in Swift shown in Fig-

ure 1. This parallel foreach loop runs N independent in-
stances of the model. In a dataflow language like Swift, this
loop generates N concurrent loop iterations, each of which
generates four user tasks with data dependencies. In previ-
ous implementations, the evaluation of the loop itself takes
place on a single compute node (typically a cluster “login
node”). Such nodes, even with many cores (today ranging
from 8 to 24) are able to generate only about 500 tasks/s.
Recently developed distribution systems such as Falkon [24]
can distribute 3,000 tasks/s if the tasks are generated and
enumerated in advance.

Despite the fact that the Swift language exposes abun-
dant task parallelism, the evaluation of the language has till
now been constrained to take place on a single compute node.
Hence, task generation rates can be a significant scalability
bottleneck. Consider a user task that occupies a whole node
for 10 seconds. For an application to run 109 such tasks
across 106 nodes, 1000 tasks must run per node, and 105

tasks must be initiated per second to keep that many cores
fully utilized. This is many orders of magnitude greater than
the rates achievable with single-node dataflow language eval-
uation.

We describe here an model capable of generating and dis-
tributing tasks at this scale. Our implementation, the dis-
tributed Turbine engine, allocates a small fraction of the
system as control processes that cooperate to rapidly eval-
uate the user script. Its innovation is based on expressing
the semantics of parallel dataflow in a language-independent
representation with semantics similar to the Swift parallel
scripting language, and implementing a distributed evalu-
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Figure 2: Left: prior centralized evaluator; Right:
distributed evaluation with Turbine.

ation engine for that representation that decentralizes the
overhead of task generation. Turbine execution employs
distributed dependency processing, task distribution via a
previously developed load balancer, and a distributed in-
memory data store that makes script variables accessible
from any node of a distributed-memory system. The sys-
tem combines the performance benefits of explicitly parallel
asynchronous load balancing with the programming produc-
tivity benefits of implicitly parallel dataflow scripting.

The remainder of this paper is organized as follows. In
§2, we motivate this work by providing two representative
examples of scripted applications. In §3, we describe the pro-
gramming and task distribution models on which our work
is based. In §4, we describe our design for parallel evaluation
of Turbine programs. In §5, we present the implementation
of the Turbine engine framework. In §6, we report perfor-
mance results from the use of the implementation in various
modes. In §7, we discuss other related work and in §8, we
offer concluding remarks.

2. MOTIVATION: APPLICATIONS
Using parallel scripted to represent applications for many-

task computations is convenient for both the user and the
underlying evaluation engine. Traditionally, scripts have
been imperative programs, with some exceptions such as
make [12]. This section presents many-task applications that
may be conveniently represented by the parallel scripting
paradigm and motivates our work by demonstrating the
need for a highly scalable many-task programming model.

2.1 Highly parallel land use modeling
The focus of the Decision Support System for Agrotech-

nology Transfer (DSSAT) application is to analyze the ef-
fects of climate change on agricultural production. Projec-
tions of crop yields at regional scales are carried out by run-
ning simulation ensemble studies on available datasets of
land cover, soil, weather, management, and climate. The
computational framework starts with the DSSAT crop sys-
tems model and evaluates this model in parallel by using
Swift. Benchmarks have been performed on prototype sim-
ulation campaigns, measuring yield and climate impact for
a single crop (maize) across the conterminous USA (120k
cells) with daily weather data and climate model output
spanning 120 years (1981-2100) and 16 different configura-
tions of fertilizer, irrigation, and cultivar choice. Figure 3
shows a listing of the DSSAT application in Swift. It repre-
sents the prototype simulation carried out for four different

1 app (file output) RunDSSAT (file input[]) {
2 RunDSSAT @output @input ;
3 }
4
5 string campaigns[] = ["srb","ncep","cpc","cpc_srb"];
6 string glst[] = readData("gridList.txt");
7
8 foreach c in campaigns {
9 foreach g, i in gridList {

10 file out <strcat(cmp, "/", glst[i], ".tar")>;
11 file in[] <strcat(c, "/", glst[i], "/*.*")>;
12 out = RunDSSAT(in);
13 }
14 }

Figure 3: Swift code for DSSAT application.

1 foreach i in innovation_values { // O(20)
2 foreach r in repeats { // 15
3 iterate cycle in annealing_cycles { // O(100)
4 iterate p in params { // 3
5 foreach n in reruns { // 1000
6 evolve(...); // 0.1 to 50 seconds
7 }}}}}

Figure 4: Swift code for SciColSim application.

campaigns, each running 120,000 jobs. Future DSSAT runs
are expected to run at a global scale, cover more crops, and
consume more computation time by 3-4 orders of magnitude.

2.2 Scientific collaboration graph analysis
The SciColSim project assesses and predicts scientific pro-

gress through a stochastic analysis of scientific collaboration
networks. The software mines scientific publications for au-
thor lists and other indicators of collaboration. The strat-
egy is to devise parameters whose values model real-world
human interactions. These parameters are governed by an
“evolve” function that performs a simulated annealing. A
“loss” factor is computed on each iteration of annealing de-
noting the amount of effort expended.

Swift-like psuedo-code for this application is shown in Fig-
ure 4. Note that Swift’s foreach statement indicates a par-
allel loop, whereas the iterate statement indicates a se-
quential loop. The computation involves a repetition of an-
nealing cycles over a range of innovation values recomputed
for increased precision. The number of jobs as a result of
these computations is on the order of 10 million for a sin-
gle production run, with complex dependencies due to the
interaction of the loop types.

2.3 Other applications
In addition to the mentioned applications, ensemble stud-

ies involving different methodologies such as uncertainty quan-
tification, parameter estimation, massive graph pruning and
inverse modeling all require the ability to generate and dis-
patch tasks in the order of millions to the distributed re-
sources. Power grid distribution design is an example of
a problem that involves solving a single-integer nonconvex
optimization problem. The initial solution reveals how to
subdivide the domain (branching); then, a new, tighter ap-
proximation is constructed on the subdomain and solved. A
problem with partial differential equation constraints could
require the solution of 1,000 subdomains, each using 1,000
processors, allowing the use of 1 million processors simulta-
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Table 1: Quantitative description of applications and required performance on 106 cores.

Application Stage
Measured Required

Tasks Task Duration Tasks Task Rate

Power-grid Distribution economic-dispatch 10,000 15 s 109 6.6× 104/s
DSSAT runDSSAT 500,000 12 s 109 8.3× 104/s

SciColSim evolve 10,800,000 10 s 109 105/s
SWAT swat 2,200 3-6 h 105 55/s

modftdock
dock 1,200,000 1,000 s 109 103/s
modmerge 12,000 5 s 107 2× 105/s
score 12,000 6,000 s 107 166/s

neously. Regional watershed analysis and hydrology are in-
vestigated by the Soil and Water Assessment Tool (SWAT),
which analyzes hundreds of thousands of data files via Mat-
lab scripts on hundreds of cores. This application will uti-
lize tens of thousands of cores and more data in the future.
SWAT is a motivator for our work because of the large num-
ber of data files. Biomolecular analysis via ModFTDock
results in a large quantity of available tasks [14], and repre-
sents a complex, multi-stage workflow.

Summary. Table 1 shows a summary of required task
rates for a full utilization of 106 cores at a stable state. Ex-
cluding the ramp up and ramp down stage, a steady flow
of tasks per second is determined by a division of number
of cores by task duration. Turbine was designed based on
the computational properties these applications display, and
we intend that performance and resource utilization will in-
crease when these applications are run on the new system.

3. PROGRAMMING AND TASK DISTRIBU-
TION MODELS: SWIFT AND ADLB

The work described here builds on the Swift parallel script-
ing programming model, which has been used to express a
wide range of many-task applications, and the Asynchronous
Distributed Load Balancing library (ADLB), which provides
the underlying task distribution framework for Turbine.

Swift [34] is a parallel scripting language for scientific com-
puting. The features of this typed and concurrent language
that support distributed scientific batch computing, include
data structures (arrays, structures), string processing, use
of external programs, and external data access to filesystem
structures. The current Swift implementation compiles pro-
grams into the Karajan workflow language, which is inter-
preted by a runtime system based on the Java CoG Kit [30].
While Swift can generate and schedule thousands of tasks
and manage their execution on a wide range of distributed
resources, each Swift script is evaluated on one node, result-
ing in a performance bottleneck. Removing such bottlenecks
is the primary motivation for the work described here.

ADLB [18] is an MPI-based library for managing a large
distributed work pool. ADLB applications use a simple
put/get interface to deposit“work packages”into a distributed
work pool and retrieve them. Work package types, priorities,
and “targets” allow this interface to implement sophisticated
variations on the classical master/worker parallel program-
ming model. ADLB is efficient (can deposit up to 25,000
work packets per second per node on an Ethernet-connected
Linux cluster) and scalable (has run on 131,000 cores on an
IBM BG/P for nuclear physics applications [18]). ADLB is
used as the load-balancing component of Turbine, where its

work packages are the indecomposable tasks generated by
the system. The implementation of its API is invisible to
the application (Turbine, in this case) and the work packages
it manages are opaque to ADLB. An experimental addition
to ADLB has been developed to support the Turbine data
store, implementing a publish/subscribe interface.

4. SCALABLE DISTRIBUTED
DATAFLOW PROCESSING

We describe here the evaluation model that Turbine uses
to execute programs with implicitly concurrent dataflow se-
mantics. Turbine’s function is to interpret an intermedi-
ate representation of a dataflow program on a distributed-
memory computing resource. Turbine specifies semantics
similar to those of the Swift parallel scripting language; how-
ever, it is general enough to serve as a model for performing
the parallel evaluation of many similar languages.

The main aspects of the Turbine model are as follows.
Implicit, pervasive parallelism. Most statements are

relations between single assignment variables. Dynamic data
dependency management enables expressions to be evalu-
ated and statements executed when their data dependencies
are met.

Typed variables and objects. Variables and objects
are constructed with a simple type model comprising the
typical primitive scalar types, a container type for imple-
menting arrays and structures, and a file type for external
files and external in-memory variables.

Constructs to support external execution. Most
application-level work is performed by external user applica-
tion components (programs or functions); Turbine is primar-
ily a means to carry out the composition of the application
components.

4.1 The Swift programming model
To underscore the motivation for this work, we briefly

summarize the Swift program evaluation model [34]. A Swift
program starts in a global scope in which variables may be
defined. Attempting to assign to a scalar variable more than
once is an error detectable at compile time. All statements
in the scope are allowed to make progress concurrently, in
dataflow order. Statements that must wait on input vari-
ables are recorded and entered into a data structure that
will be notified when the inputs are stored. Upon notifica-
tion, the statement is started. When variables are returned
by functions, they are closed. Input and output variables
passed to functions exist in the original caller’s scope and
are passed and accessed by reference. Since input variables
cannot be modified in the called function, they behave as if
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Figure 5: Turbine component architecture.

passed by value.
A key feature of Swift is the distinction between com-

posite functions and leaf functions (denoted with the app

keyword). Composite invocations cause the creation of new
scopes (stack frames) in which new local variables are dy-
namically created and new statements may be issued. Leaf
functions are used to launch external execution. Originally,
this was used primarily to launch remote execution using
techniques related to grid computing.

The original Swift system can support large scripts that
run on thousands of cores. However, the evaluation of the
script itself is constrained to run on a single node. This
limitation is in large part due to the fact that Swift’s data
dependency model is a shared in-memory data structure in
a single node; no mechanism exists for cross-address-space
communication and synchronization of the state of future
objects. The execution model of Turbine eliminates the lim-
itations of this centralized evaluation model.

4.2 Overview of Turbine features
The high-level architecture of Turbine is shown in Fig-

ure 5. The center of the system is the network of ADLB
servers, which provide load balancing and data services.
Engines evaluate the user Turbine code and its data depen-
dencies, generating and submitting tasks to other engines
and to workers which execute external code such as user
programs and functions. Tasks may store data, resulting in
notifications to listening engines, allowing them to satisfy
data dependencies and release more tasks.

Turbine operations include data manipulation, the defini-
tion of data-dependent execution expressed as data-dependent
statements, and higher-level constructs such as loops and
function calls. Programs consist of composite functions,
which are essentially a context in which to define a body
of statements. Leaf functions are provided by the system as
built-ins or may be defined by the user execute to external
(leaf) tasks; this is the primary method of performing user
work. Generally, composite functions are executed by en-
gines and leaf functions are executed by workers. Each state-
ment calls a composite or leaf function on input and output
variables. Thus, statements serve as links from task outputs
to inputs, forming an implicit, distributed task graph as the
script executes.

Variables are typed in-memory representations of user data.
Variable values may be scalars, such as integers or strings or
containers representing language-level features, such as ar-
rays or structures (records). All variables are single-assignment
futures: they are open when defined and closed after a value

has been assigned. Containers are also futures, as are each of
their members. Containers can be open or closed; while they
are open, their members can be assigned values. A container
is closed by Turbine when all program branches eligible to
modify the container complete. In practice, this action is
controlled in the translation from the source (Swift) program
by scope analysis and the detection of the last write, the end
of the scope in which it is defined, as any returned containers
must be closed output variables. Scopes (i.e., stack frames)
provide a context for variable name references. Scopes are
composed into a linked call stack. Execution continues until
all statements complete.

Script variables are stored in a globally accessible data
store provided by the servers. Turbine operations are avail-
able to store and retrieve data to local memory as in a typical
load-store architecture.

Data dependencies for statements are stored locally on
the engine that issued the statement. Engines register no-
tifications with the global data store to make progress on
data-dependent statements when data is stored, regardless
of which process stored the data.

Thus, the main contribution of Turbine that facilitates
distributed evaluation is a distributed variable store based
on futures. This store, accessible from any computing node
within a Turbine program, enables values produced by a
function executing on one node to be passed to and con-
sumed by a function executing on another; the store man-
ages the requisite event subscriptions and notifications. Ex-
amples of the use of the distributed future store follow in
the next section.

4.3 Turbine use cases
In this section, we enumerate critical high-level dataflow

language features as expressed by Swift examples and demon-
strate that our highly distributed evaluation model satisfies
the required feature set.

Basic dataflow. Turbine statements that require vari-
ables to be set before they can execute (primarily the prim-
itives that call an external user application function or pro-
gram) are expressed as the target operations of statements
that specify the action, the input dependencies required for
the action to execute, and what output data objects are then
set by the action.

Consider the fragment derived from the example in Fig-
ure 1:

1 Model m; // ... etc.
2 m = runModel();
3 a = analyze(m);
4 v = validate(m);
5 p = plot(a, v);

Example 1(a): Swift

This fragment assumes variables a, v, and p are to be re-
turned to a calling procedure. The input and output data
dependencies are captured in the following four Turbine state-
ments:

1 allocate m # ... etc.
2 call_app runModel [ m ] [ ]
3 call_app analyze [ a ] [ m ]
4 call_app validate [ v ] [ m ]
5 call_app plot [ p ] [ a v ]

Example 1(b): Turbine

These statements correspond to data dependencies stored
in the process that evaluated them. Data definitions corre-
spond to addresses in the global data store. The runModel
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task may result in a task issued to the worker processes;
when m is set by the worker as a result of the first action,
the engines responsible for dependent actions are notified,
and progress is made.

Each Turbine engine maintains a list of data-dependent
statements that have been previously read. Additionally,
variable addresses are cached. Thus, a sequence of state-
ments as given in Example 1(b) results in an internal data
structure that links variable addresses to statement actions.
As shown in the figure below, the runModel task has no de-
pendencies. Statements analyze and validate refer to data
m, which the engine links to the execution of these state-
ments.

plot

vvalidate

aanalyze

mrunModel

p

Expression evaluation. In practice, scripting languages
provide much more than the coordination of external execu-
tion. Because Swift and other higher-level workflow lan-
guages offer convenient arithmetic and string operations,
processing expressions is a critical feature. The following
Swift fragment shows the declaration of two integers, their
addition, and the printed result via the built-in trace.

1 int i = 3, j = 4, k;
2 k = i + j;
3 trace(k);

Example 2(a): Swift

At the Turbine level, this results in the declaration of three
script variables and two statements. At run time, all five
lines are read by the Turbine engine. Variable k is open.
Statement plus_integer, a built-in, is ready because its
inputs, two literals, are closed. The engine executes this
function, which closes k. The engine notifies itself that k

is closed, which makes statement trace ready; it is then
executed.

1 allocate i integer 3
2 allocate j integer 4
3 allocate k integer
4 call_builtin plus_integer [ i j ] [ k ]
5 call_builtin trace [ k ] [ ]

Example 2(b): Turbine

Conditional execution. Turbine offers a complete set of
features to enable high-level programming constructs. Con-
ditional execution is available in Swift in a conventional way.
The following example shows that the output of a user func-
tion may be checked for a condition, resulting in a context
block for additional statements:

1 c = extractStatistic(a);
2 if (c) {
3 trace("Warning: c is non-zero");
4 }

Example 3(a): Swift

At the Turbine level, the conditional statement is depen-
dent on a single input, the result of the conditional expres-
sion. When it executes, it essentially executes as a built-in
that conditionally jumps into a separate context block. This

block is trivially generated by the compiler from the body
of the conditional construct. Code executing in the body
block references variables as though it were in the original
context by retrieving from the data store.

1 ... # open code
2 call_app extractStatistic [ a ] [ c ]
3 statement [ c ] if-1 [ c ]
4 }
5
6 proc if-1 { c } {
7 set v:c [ get_integer c ]
8 if (v:c) {
9 allocate s string "Warning: c is non-zero"

10 call_builtin trace [ ] [ s ]
11 }
12 }

Example 3(b): Turbine

Our compiler is capable of translating switch and else if

expressions using this basic technique.
Since the variables are accessible in the global data store,

and the condition could be blocked for a long time (e.g., if
extractStatistic is expensive), the condition body block
could be started on another engine. However, since the de-
pendencies here are essentially linear, shipping the execution
would yield no scalability benefit and would just generate
additional traffic to the load-balancing layer. Consequently,
our model does not distribute conditional execution.

Composite functions. As discussed previously, there
are two main types of user functions: composite functions
and leaf functions. Leaf functions are opaque to the dataflow
engine and are considered in §5. Composite functions pro-
vide a context in which to declare data and issue statements.
Since statements are eligible to be executed concurrently,
composite function call stacks enable concurrency.

Example 4(a) shows part of the recursive implementation
of the nth Fibonacci number in Swift syntax. The two re-
cursive calls to fib may be executed concurrently. Thus,
Turbine packs these statements as work units tagged for
execution on peer engines as made available by the load bal-
ancer.

1 (int f) fib(int n) {
2 if (n > 2)
3 f = fib(n-1) + fib(n-2);
4 ...
5 }

Example 4(a): Swift

The translated Turbine code below demonstrates that af-
ter the arithmetic operations are laid out, call_composite
is used to issue the two recursive calls on different engines
as selected by the load balancer. When such a work unit is
received by another engine, it unpacks the statement and its
attached data addresses (e.g., f and n), jumps into the ap-
propriate block, and evaluates the statements encountered
there.

1 proc fib { n f } {
2 allocate t0 integer 1
3 allocate t1 integer
4 allocate t2 integer
5 call_builtin minus_integer [ t1 ] [ n t0 ]
6 # fib(n-1)
7 call_composite fib [ t2 ] [ t1 ]
8 ...
9 # fib(n-2)

10 call_composite fib ...
11 call_builtin plus_integer [ f ] [ t2 ... ]
12 ...
13 }
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Example 4(b): Turbine

Data structures. Swift contains multiple features for
structured data, including C-like arrays and structs. Swift
arrays may be treated as associative arrays; the subscripts
may be strings, and so forth. Structured data members are
linked into the containing data item, which acts as a table.
These structures are fully recursive. Structured data vari-
ables may be treated as futures, enabling statements that are
dependent on the whole variable. Swift arrays and structs
are allocated automatically as necessary by the compiler and
are closed automatically by the runtime system when no
more modifications to the data structure are possible. Swift
limits the possible modifications to a structured data item
to the scope in which it was declared; in other scopes, the
data is read-only.

As shown, eye2 builds a 2×2 array. The data structure a

is allocated by the compiler since it is the function output.

1 (int a[][]) eye2() {
2 a[0][0] = 1;
3 a[0][1] = 0;
4 a[1][0] = 0;
5 a[1][1] = 1;
6 }

Example 5(a): Swift

In the Turbine implementation, a reusable containers ab-
straction is used to represent linked data structures. A con-
tainer variable, stored in a globally accessible location, al-
lows a user to insert and look up container subscripts to
store and obtain data addresses for the linked items.

In the example below, multiple containers are allocated by
the data container statement, including the top-level con-
tainer a, the container t2=a[0], etc. The container_insert
command inserts t1 at a[0], and so on.

1 proc eye2 { a } {
2 allocate_container a
3 allocate_container t1
4 allocate_container t2
5 allocate i0 integer 0
6 allocate i1 integer 1
7 container_insert_imm a 0 t1
8 container_insert_imm t1 0 i0
9 container_insert_imm t1 1 i1

10 ...
11 }

Example 5(b): Turbine

When eye2 returns, a is closed, and no further changes
may be made. Thus, a user statement could be issued that
is dependent on the whole array.

Iterations. The primary iteration method in Swift is the
foreach statement, which iterates over an array. At each
iteration, the index and value are available to the executing
block. In the example below, the user transforms each a[i]

to b[i] via f:

1 int b[];
2 foreach i, v in a {
3 b[i] = f(a[i]);
4 }

Example 6(a): Swift

Each execution is available to be run concurrently, that is,
when each a[i] is closed. Thus, we reuse our block state-
ment distribution technique on a compiler-generated block:

...

loop a [ a ] loop_1loop a [ a ] loop_1

loop_1 k=0loop_1 k=0
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proc loop_1 { ...
  k=1
  ...

proc loop_1 { ...
  k=1
  ...

...

Turbine evaluation: 
Split loop iterations

Turbine evaluation: 
Split loop iterations

foreach k,v in b
    b[i] = f(a[i]);
foreach k,v in b

    b[i] = f(a[i]);

Figure 6: Distributed iteration in Turbine.

1 ... # open code
2 allocate_container b
3 loop a [ a ] loop_1
4 }
5
6 # inputs: loop counter, loop variable and additionals
7 proc loop_1 { i v a } {
8 # t1 is a local value
9 set t1 [ container_lookup_imm [ a i ] ]

10 allocate t2 integer
11 call_composite f [ t2 ] [ t1 ]
12 container_insert_imm b i t2
13 }

Example 6(b): Turbine

The built-in statement loop retrieves the set of available
indices in a; for each index, a work unit for block loop_1

is sent to the load balancer for execution on a separate en-
gine. Thus, data dependencies created by statements in each
iteration are balanced among those engines.

An example of this process is shown in Figure 6. First, the
user script is translated into the Turbine format 1©. Follow-
ing Example 6(b), a loop statement is evaluated, resulting in
the interpretation of a distributed loop operation, producing
additional new work units containing script fragments 2©.
These fragments are distributed by using the load balancer
system 3© and are evaluated by engines elsewhere, resulting
in the evaluation of application programs or functions, which
are blocks of Turbine statements 4©. These blocks execute,
producing data-dependent expressions for their respective
local engines.

5. TURBINE ENGINE IMPLEMENTATION
In this section, we describe our prototype implementation

of Turbine, which implements the model described in the
previous section.

5.1 Program structure
To represent the functionality described in §4, the Turbine

implementation consists of the following components:

• A compiler to translate the high-level language (e.g.
Swift) into its Turbine representation

7



• The load balancing and data access services

• The data dependency engine logic

• Built-ins and features to perform external execution
and data operations

The source program (e.g., in Swift) is translated into its
Turbine representation by a provided compiler, described
elsewhere [2].

In our prototyping work, we leverage Tcl [32] as the imple-
mentation language and express available operations as Tcl
extensions. We provide a Tcl interface to ADLB to operate
as the load balancer. The load balancer was extended with
data operations; thus, in addition to task operations, data
storage, retrieval, and notification operations are available.
ADLB programs are standard MPI programs that can be
launched by mpiexec (see §3). Generated Turbine programs
are essentially ADLB programs in which some workers act
as data dependency processing engines. Core Turbine fea-
tures were implemented as a C-based Tcl extension as well.
Tcl features are used simply to represent the user script and
not to carry out performance-critical logic.

The engines cooperate to evaluate the user script using the
techniques in §4 to produce execution units for distribution
by the distribution system. The engines use the ADLB API
to create new tasks and to distribute the computational work
involved in evaluating parallel loops and composite function
calls — the two main concurrent language constructs.

ADLB performs highly scalable task distribution but does
incur some client overhead and latency to ingest tasks. As
more ADLB client processes are employed to feed ADLB
servers, this overhead becomes more distributed, and the
overall task ingestion and execution capacity increases. Each
client is attached to one server, and traffic on one server does
not congest other server processes. ADLB can scale task in-
gestion fairly linearly with the number of servers on systems
with hundreds of thousands of cores. Thus a primary design
goal of the Turbine system is to distribute the work of script
evaluation to maximize the ADLB task ingestion rate and
hence the utilization of extreme-scale computing systems.

5.2 Distributed data storage in Turbine
The fundamental system mechanics required to perform

the operations required by the previous section were devel-
oped in Turbine, a novel distributed future store. The Tur-
bine implementation comprises a globally addressable data
store, an evaluation engine, a subscription mechanism, and
an external application function evaluator. Turbine script
variable data is stored on servers and processed by engines
and workers. These variables may be string, integer,
float, file, or container data.

Variable addresses in Turbine are represented as 64-bit
integers. Addresses are mapped to responsible server ranks
through a simple hashing scheme. Unique addresses may
be obtained from servers. Given an address, a variable may
be allocated and initialized at that location. An initialized
variable may be the target of a notification request by any
process. A variable may be set once with a value, after which
the value may be obtained by any process.

Progress is made when futures are set and engines re-
ceive notification that new input data is available. Turbine
uses a simple subscription mechanism whereby engines no-
tify servers that they must be notified when a data item is

ready. As a result, the engine either 1) finds that the data
item is already closed or 2) is guaranteed to be notified when
it is. When a data item is closed, the closing process receives
a list of engines that must be notified regarding the closure
of that item, which allows dependent statements to progress.

A variable of type file is associated with a string file
name; however, unlike a string, it may be read before the
file is closed. Thus, output file locations may be used in
Turbine statements as output data, but the file name string
may be obtained to enable the creation of a shell command
line.

1 allocate a file "input.txt"
2 allocate b file "output.txt"
3 call_app create_file [ a ] [ ]
4 call_app copy_file [ b ] [ a ]

At the end of this code fragment, output.txt is closed, al-
lowing it to be used as the input to other Turbine tasks. Note
that this file-type variable does not represent the contents
of the file; it is simply the future variable corresponding to
the existence of the file with the given name. The user leaf
task (here, copy_file) is responsible for carrying out I/O.

Container variables are similar to other Turbine script
variables, but the value of a container variable is a map-
ping from keys to Turbine variable addresses. Operations
are available to insert, lookup, and list values in containers.

6. PERFORMANCE RESULTS
Our performance results focus on three main aspects of

Turbine performance: task distribution using ADLB, data
operations using the new ADLB data services, and eval-
uation of the distributed Turbine loop construct. These
demonstrate the ability of Turbine to meet the performance
goals required by our applications.

In each case, we present results from systems of Turbine
control processes and neglect worker processes because the
focus of this paper is our distributed-memory dataflow eval-
uation functionality and not task distribution. We report
elsewhere [2] that the full implementation, including worker
processes, is capable of achieving 90% utilization on 64K
cores of the Blue Gene/P for 10-second tasks in a case com-
piled from a realistic Swift program.

All presented results were obtained on the SiCortex 5872
at Argonne. Each MPI process was assigned to a single core
of a six-core SiCortex node, which runs at 633 MHz and
contains 4 GB RAM. The SiCortex contains a proprietary
interconnect with ∼1 microsecond latency.

6.1 Raw task distribution
To evaluate the ability of the Turbine architecture to meet

its performance requirements, we first report the perfor-
mance of ADLB. Following that model, each ADLB server
occupies one control process. Thus, we desire to measure the
task throughput rate of a single ADLB server. We config-
ured ADLB with one server and a given number of workers.
A single worker reads an input file containing a list of tasks
for distribution over ADLB to other workers. This emulates
a Turbine use case with a single engine that can produce
tasks as fast as lines can be read from an input file. Two
cases are measured: one in which workers execute sleep for
a zero-duration run (labeled “/bin/sleep”) and one in which
they do nothing (labeled “no-op”).

The results are shown in Figure 7. In the no-op case,
for increasing numbers of client processes, performance im-
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proved until the number of clients was 384. At that point,
the ADLB server was processing 21,099 tasks/s, far exceed-
ing the desired rate of 1,000 tasks/s per control process.
The no-op performance is then limited by the single-node
performance and does not increase as the number of clients
is increased to 512. When the user task actually performs a
potentially useful operation such as calling an external ap-
plication (/bin/sleep), the single-node ADLB server per-
formance is not reached by 512 client processes.

We note that in practice a Turbine application may post
multiple “system” tasks through ADLB in addition to the
“user” tasks required for the user application. Thus, the
available extra processing on the ADLB server is appropri-
ate. Overall, this test indicates that ADLB can support the
system at the desired scale.

6.2 Data operations
Next, we measure another key underlying service used by

the Turbine architecture: the ADLB-based data store. This
new component is intended to scale with the number of tasks
running in the system; each task will need to read and write
multiple small variables in the data store to enable the user
script to make progress.

We configured a Turbine system with a given number of
servers and clients and with one engine that is idle. ADLB
store operations are performed on each client, each work-
ing on independent data. Each client interacts with differ-
ent servers on each operation. Each client creates 200,000
small data items in a two-step process compatible with the
dataflow model; they are first allocated and initialized, then
set with a value and closed.

Figure 8 shows that for increasing numbers of servers and
clients, the insertion rate increases monotonically. In the
largest case, 1,024 servers were targeted by 1,023 workers
with 1 idle engine, achieving an insertion rate of 19,883,495
items/s. Since data operations are independent, congestion
occurs only when a server is targeted by multiple simultane-
ous operations, creating a temporary hot spot. Continuing
with the performance target of 1,000 tasks/s per server, this
allows each task to perform almost 20 data operations with-
out posing a performance problem.

The data item identifiers were selected randomly, thus the
target servers were selected randomly. Using the existing
Turbine and ADLB APIs, an advanced application could be
more selective about data locations, eliminating the impact
of hot spots. This case does not measure the performance

Figure 7: Task rate result for ADLB on SiCortex.

Figure 8: Data access rate result for ADLB on
SiCortex.

of data retrieval operations, covered implicitly in §6.4.

6.3 Distributed data structure creation
Thus far we have measured only the performance of un-

derlying services. Here, we investigate the scalability of the
distributed engine processes. The engines are capable of
splitting certain large operations to distribute script pro-
cessing work. An important use case is the construction of a
distributed container, which is a key part of dataflow scripts
operating on structured data. The underlying operations
here are used to implement Swift’s range operator, which
is analogous to the colon syntax in Matlab; for example,
[0:10] produces the list of integers from 0 to 10. This can
be performed in Turbine by cooperating engines, resulting
in a distributed data structure useful for further processing.

We measured the performance of the creation of distributed
containers on multiple engines. For each case plotted, a Tur-
bine system was configured to use the given number of en-
gines and servers. A Turbine distributed range operation
was issued, creating a large container of containers. This
triggered the creation of script variables storing all integers
from 0 to N × 100, 000, where N is the number of Turbine
engine processes. The operation was split so that all en-
gines were able to create and fill small containers that were
then linked into the top-level container. Workers were not
involved in this operation.

Figure 9 shows that the number of cooperating control
processes, increasing to the maximal 2,048, half of which act
as ADLB servers and half of which act as Turbine engines,
does not reach a performance peak. Each operation creates
an integer script variable for later use. At the maximum
measured system size, the system created 1,262,639 usable
script variables per second, in addition to performing data
structure processing overhead, totaling 204,800,000 integer
script variables in addition to container structures.

6.4 Distributed iteration
Once the application script has created a distributed data

structure, it is necessary to iterate over the structure and
use its contents as input for further processing. For example,
once the distributed container is created in the previous test,
it can be used as the target of a foreach iteration by multiple
cooperating engines.

To measure the performance of the evaluation of distributed
loops on multiple engines, for each case plotted, we config-
ured a Turbine system to use the given number of engines
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Figure 9: Range creation rate result for Turbine on
SiCortex.

and servers. In each case, a Turbine distributed range oper-
ation is issued, which creates a large container of containers.
The operation is split so that all engines are able to create
and fill small containers that are then linked into the top-
level container. Then, the engines execute no-op tasks that
read each entry in the container once. The measurement
was made over the whole run, capturing range creation and
iteration. Thus, each “operation” measured by the test is a
complex process that represents the lifetime of a user script
variable in a Turbine distributed data structure.

As in the previous test, each engine creates 100,000 vari-
ables and links them into the distributed container, over
which a distributed iteration loop is carried out. Figure 10
shows that performance increases monotonically up to the
largest measured system, containing 1,024 servers and 1,024
engines, in addition to 1 idle worker. At this scale, Turbine
processes 566,685 operations per second.

There are multiple ways that performance could be im-
proved. First, this test was performed on the individually
slow SiCortex processors. Additionally, we plan multiple
optimizations to improve this performance. As noted in the
previous test, variables are created in a multiple-step man-
ner corresponding to a straight-forward use of our dataflow
model. Since we are creating “literal” integers, these steps
could be replaced with composite operations that allocate,
initialize, and set values in one step. Multiple literals could
be simultaneously set if batch operations were added to the
API. The loop-splitting algorithm itself is targeted for op-
timization and better load balancing. As a last resort, an
application could use proportionally more processes as con-
trol processes and fewer workers.

7. RELATED WORK
Our work is related to a broad range of previous work,

including programming models and languages, task distri-
bution systems, and distributed data systems. These par-
allel task distribution frameworks and languages provide
mechanisms to define, dispatch and execute tasks over a
distributed computing infrastructure or provide distributed
access to data, but they have important differences from our
work in scope or focus.

7.1 Many-task programming models
Recent years have seen a proliferation of programming

models and languages for distributed computing.

Figure 10: Range creation, iteration rate result for
Turbine on SiCortex.

One family comprises the “big data” languages and pro-
gramming models strongly influenced by MapReduce [7],
which are aimed at processing extremely large batches of
data, typically in the form of records. Task throughput is
not an important determinant of performance, unlike in our
work, because very large numbers of records are processed
by each task. The other major family closest to our work is
Partitioned Global Address Space (PGAS) languages, which
are designed for HPC applications and provide some related
features but differ greatly in their design and focus.

Skywriting [20] is a coordination language that can dis-
tribute computations expressed as iterative and recursive
functions. It is dynamically typed, and it offers limited data
mapping mechanisms through a static file referencing; our
language model offers a wider range of static types with
a rich variable-data association through its dynamic map-
ping mechanism. The underlying execution engine, called
CIEL [21], is based on a master/worker computation paradigm
where workers can spawn new tasks and report back to the
master. A limited form of distributed execution is sup-
ported, where the control script can be evaluated in parallel
on different cluster nodes. The CIEL implementation is not
designed specifically for high task rates: task management
is centralized, and communication uses HTTP over TCP/IP
rather than a higher-performance alternative.

Interpreted languages building on MapReduce to provide
higher-level programming models include Sawzall [23], Pig
Latin [22] and Hive [29]. These languages share our goal
of providing a programming tool for the specification and
execution of large parallel computations on large quantities
of data and facilitating the utilization of large distributed
resources. However, the MapReduce programming model
just supports key-value pairs as input or output datasets
and offers two types of computation functions, map and re-
duce, with more complex dataflow patterns requiring mul-
tiple MapReduce stages. In contrast, we implement a full
programming language with a type system, complex data
structures, and arbitrary computational procedures. Some
systems such as Spark [36] and Twister [11] are incremen-
tal extensions to the MapReduce model to support iterative
computions, but this approach does not give the same flex-
ibility or expressiveness as a new language.

Dryad [15] is an infrastructure for running data-parallel
programs on a parallel or distributed system, with function-
ality roughly a superset of MapReduce. In addition to the
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MapReduce communication pattern, many other dataflow
patterns can be specified. Communication between Dryad
operators can use TCP pipes and shared-memory FIFOs to
be the communication as well as files. Dryad dataflow graphs
are explicitly developed by the programmer; whereas our
dataflow model is implicit. Furthermore, Dryad’s dataflow
graphs cannot easily express data-driven control flow, a key
feature of Swift. Higher-level languages have been built on
Dryad: a scripting language called Nebula, which does not
seem to be in current use, and DryadLINQ [35], which gener-
ates Dryad computations from the LINQ extensions to C#.

7.2 Approaches to task distribution
Scioto [10] is a lightweight framework for providing task

management on distributed-memory machines under one-
sided and global-view parallel programming models. Scioto
has strong similarities to ADLB: both are libraries providing
dynamic load balancing for HPC applications.

Falkon [24] performs dynamic task distribution and load
balancing. Task distribution is distributed but uses a hier-
archical tree structure, with tasks inserted into the system
from the top of the tree, in contrast to the flatter decentral-
ized structure of ADLB.

DAGuE [6] is a framework for scheduling and manage-
ment of tasks on distributed and many-core computing en-
vironments. The programming model is minimalist, based
around explicit specification task of DAGs, which does not
bear much resemblance to a traditional programming lan-
guages, and does not support data structures such as arrays.

Cilk-NOW [5] is a distributed-memory version of a func-
tional subset of the Cilk task-parallel programming model.
It provides fault tolerance and load balancing on networks
of commodity machines but does not provide globally visible
data structures.

7.3 Approaches to distributed data
Linda [1] introduced the idea of a distributed tuple space,

a key concept in ADLB and Turbine. This idea was further
developed for distributed computing in Comet [17] which
has a goal similar to that of our work but focuses on dis-
tributed computing and is not concerned with scalability on
HPC systems. Turbine’s data store is different in function-
ality because it is designed primarily to support the imple-
mentation of a higher-level language. It does not support
lookup based on templates or approximate key, only lookup
of values by exact key.

Recently, considerable research has been devoted to dis-
tributed key-value stores, which are not fundamentally dif-
ferent from tuple spaces but tend to emphasize simple data-
storage rather than data-driven coordination and support
simpler query methods such as exact key lookups or range
queries. Memcached [13] is a simple RAM-based key-value
store that provides high performance with no durability and
minimal consistency guarantees; it provides a single, com-
pletely flat hash table with opaque keys and values. Re-
dis [25] provides similar functionality to memcached, as well
as a range of data structures including hashtables and lists
and the ability to subscribe to data items. Other, more so-
phisticated key-value stores that are highly scalable, use disk
storage, and provide consistency and durability guarantees
include Dynamo [8] and Cassandra [16]. While these key-
value systems provide a range of options for data storage,
they do not take advantage of high-performance message

passing available on many clusters and do not provide all of
the coordination primitives that were required in Turbine to
implement a dataflow language like Swift.

8. CONCLUSION
We have described three main contributions of the Turbine

engine and its programming model.
First, we have identified many-task, dataflow programs

as a highly useful model for many real-world applications,
many of which are currently running in Swift. We provided
projections of exascale parameters for these systems, result-
ing in requirements for a next-generation task generator.

Second, we identified the need for a distributed-memory
system for the evaluation of the task-generating script. We
identified the distributed future store as a key component
and produced a high performance implementation. This in-
volved the development of a dependency processing engine,
a scalable data store, and supporting libraries to provide
highly scalable data structure and loop processing.

Third, we reported the performance results from running
the core system features on the SiCortex. The results show
that the system can achieve the required performance for
extreme cases.

While the Turbine execution model is based on the seman-
tics of Swift, it is actually much more general. We believe
that it is additionally capable of executing the dataflow se-
mantics of languages such as Dryad, CIEL, and PyDFlow,
and could thus serve as a prototype for a common execution
model for these and similar languages.
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