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In many domains of science, engineering, and commerce, data analysis systems are
employed to derive knowledge from datasets describing experimental results or
simulated phenomena. To support such analyses, we have developed a “virtual data
system” in which a uniform notation is used to request the invocation of data
transformation procedures and to record how every result derived by the system was
produced. We maintain such prospective and retrospective information in an
integrated schema alongside semantic annotations, and thus enable a powerful query
capability in which the rich semantic information implied by knowledge of the
structure of data derivation procedures can be exploited to provide an information
environment that fuses recipe, history, and application-specific semantics. We
provide here an overview of this integration, the queries and transformations that it
provides, and examples of how these capabilities can serve the scientific process.

1 Introduction

We present a general model for representing and querying provenance information within
the context of a Virtual Data System (VDS) that captures, and enables discovery of, the
relationships among data, procedures and computations. We focus, in particular, on the
VDS query model, and examine how knowledge of the provenance of virtual data objects
and their relationships can be used to enhance program development, data analysis, and
other tasks.

In what we call the virtual data model, we associate with each data object the procedure
that was used, or can be used, to produce or reproduce it. Such associations are made with
sufficient fidelity that the steps used to create a data object can be re-executed to reproduce
the data object (within obvious limitations) at a later time or a different location. We refer
to the information that we record to achieve this reproducibility the provenance of a data
object. (Throughout, by “procedure” we refer to executable application programs, but the
paradigm applies equally well to a service-oriented procedure model).

We view provenance in this context as being of two parts: all the aspects of the
procedure or workflow for creating a data object (prospective provenance, or “recipe”) as
well as information about the runtime environment in which these procedures were
executed and the resources used in their invocations (retrospective provenance).

While only the prospective information is needed to produce or reproduce a data object,
the complete provenance record—prospective and retrospective—provides a more
complete understanding of the data. This level of understanding is of great value in
scientific data preparation and analysis, allowing the user to (for example) reason about the
validity of data and conclusions drawn from it; determine and assess the methods that were
used to process the data; and transform or compose existing methods to pose new
questions.

The Virtual Data System that we have developed to implement this model [ZW+05]
maintains a precise record of data transformation procedures, inputs (both data and
parameter settings) to transformations, the environment in which transformations were
invoked, and relevant data about how a transformation behaved (e.g., duration). Armed
with this information, we can track, for any data object created within the system, a
derivation history recursively back to raw input data, and thus obtain accurate information
about how analysis conclusions (and all intermediate results) were derived. We can
understand data dependencies, and reason about the consequences for an analytical finding
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of changing some processing step, parameter, or input dataset. We can audit how results
were derived, and create recipes for conducting new investigations that build on previous
findings and approaches.

We focus in this paper on illustrating the virtual data approach to integrating
prospective and retrospective provenance with semantic annotations; on the powerful
queries that can be performed on such an integrated base; and on the implementation
techniques that can provide these benefits in a large-scale scientific computing
environment. The basic mechanisms for these techniques have been implemented in our
Virtual Data System for some time [FVV+02]; this paper describes schema extensions and
queries whose implementation is in progress.

2  Virtual data schema for provenance recording

We model as a logical virtual data schema the various relationships that exist among
datasets, procedures, calls to procedures (which operate on datasets), and the zero or more
physical invocations of a specific call. These relations are described by the entity-
relationship (ER) diagram of Figure 1. In this diagram, primary keys are underlined;
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Figure 1: Schema for provenance and annotation The integration of workflows

here enables queries to consider the
provenance history of data objects, and the interrelationships between procedures based on
the patterns in which they are actually used in defined workflows.

3 General Model for Provenance and Annotation Query

Having defined our virtual data model in relational terms, we can use standard SQL to

query entities in the data model. For example, we can ask questions such as “select

procedure calls whose argument modelType has value nonlinear,” “select invocations that

ran at location Argonne,” and the join query “select procedure calls that ran at location
Argonne and whose argument modelType has value nonlinear.”

We find it useful to think of the virtual data query model as having three major

dimensions (as shown below): 1) direct provenance from the records

Virtual data of procedure definition, procedure arguments, and runtime

relationships - on  invocation recording; 2) metadata annotations that enrich this

lineage application-independent ~ schema  with application-specific

information; and 3) lineage information obtained by interrogating the

patterns of procedure calls, argument values, and metadata inherent

in the workflow graphs that describe the indirect nature of the

Metadata
annotations

Fig 2:Query dimensions
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production of a given data object. We describe below the general nature of these three
dimensions.

Virtual data relationship queries. The core queries in our model are based on the
fundamental entities of the virtual data schema: the prospective declarations of procedure
definitions and calls, the retrospective records of actual procedure invocations, and so
forth. These queries focus on the primary tables of the virtual data schema. The first two
forms of queries deal with prospective information, while the third deals with retrospective
information.

Fundamental queries of entity attributes: Find procedures and calls by namespace,
name, and version; find all the calls that invoke a given procedure.

Query by parameters: Find procedures that pass parameter named p; find procedure
calls that pass a parameter of type t with value v in direction (i.e., input or output) d; find
invocations that executed with parameter p of value v and direction d; find procedure calls
that process logical file f in direction d (i.e. as input or output); find all the files of
direction d consumed or returned by a procedure call.

Query of invocation records: find invocation records by procedure or procedure-call
namespace, name, version; find procedures or procedure calls executed at site name sn;
find procedures or calls executed at host h; find invocations run on machines with OS type
os; find jobs with exit status s; find jobs with run time > r; find jobs within a set of jobs
that ran longer than twice that the set’s average time; find invocations that produce files of
type t with size < s; find the invocation records that produce or consume a dataset d.

Annotation queries. The annotation capabilities provided by the virtual data model on
procedures, arguments, datasets, and workflows form the basis for this next dimension of
query. While various applications may use these annotations to maintain application-
specific provenance, we consider this a separate dimension from the provenance
information that is intrinsic to the virtual data model. (As we discuss at the end of this
section, users may form queries that join across these dimensions).

Annotation queries can, for example, select all annotations for any annotatable virtual
data object or set of objects, or select from an annotation result set based on any of subject,
predicate, object, object type, user, or annotation date.

Annotations can be used to select virtual data objects as well: for example, find all
objects (of any type) annotated with predicate p of type t and value v; objects of a specific
type annotated with predicate p of type t and value v; or objects (one type or any type)
annotated by same set of attribute predicates.

Lineage graph queries. A powerful source of information in a virtual data system is
the lineage relationships that we can derive for all data products. For example, knowing
that the inputs to an application Ak were processed by Ai can often tell a scientist important
characteristics about the results that Ak will derive. Knowing further whether Aj processed
the output of Ai somewhere between those two steps may determine whether further
analysis of that chain of data is required.

A simple class of lineage graph queries refer to information that has been propagated
along derivation relationships. For example, “find datasets derived from dataset d” or “find
ancestor datasets to dataset d that have type t.”

More complex queries may refer to patterns within the derivation graph. Much work
has been done in this field: for example, Giugno and Shasha [GS02] describe a model for
such patterns in a system called GraphGrep. We adapt the GraphGrep model here to the
specific problem of matching workflow graphs.

We provide this capability through special objects that can match specific patterns of
procedures, calls, and invocations, enabling the composition of “workpattern” objects that
can perform powerful searches and queries on the workflows in our database. The
semantics of such matches work as follows. Transformation patterns, call patterns, and
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invocation patterns, chained into a DAG within a workpattern object can match either
fixed or varying numbers of nodes of their corresponding object types in any workflow
defined in the database. The nodes of a workpattern graph can match procedure definitions
or calls that meet criteria such as argument name, argument values, argument types, and/or
annotations.

Performing a query on a workpattern can select a set of workflows, where in each
selected workflow, one or more subgraphs are matched. The target search space of a
workpattern query can be either the entire database, or a specific workflow or set of
workflows selected through a prior search. Using the query model defined above, we can
perform queries such as: find datasets that were derived within N levels of procedure p;
find datasets that are the result of workpattern wp; and find the procedure calls in
workflow w whose inputs have been processed by any workflow matching workpattern
wp.

Provenance queries in multiple dimensions. The capabilities of the queries defined
above are amplified by the ability to join them flexibly across multiple dimensions of the
virtual data schema. For example, we may ask for transformations with a specified
signature that have been called with specific argument values (or ranges) and which match
an annotation query; the metadata values for a specified set of predicates from a
transformation list returned by another query; or the minimum, maximum, and average run
times of a set of procedure calls matching workpattern wp and annotation query g.

For example, a set of procedures selected by a workpattern query can be used to select
metadata values that are then used as a search key to select a set of procedure calls. This
level of nesting can be used to successively filter (or expand) a result set, and such query
chaining can take place to effectively arbitrary depths (limited only by the capabilities of
the underlying database system).

Modification and composition queries. Maintaining dataset, procedure, workflow,
annotation, and provenance information in an integrated schema facilitates not only
powerful queries, but also the ability to couple queries with database update procedures to
define new procedures, annotations, and work requests. We illustrate such possibilities
below.

Change arguments: For every procedure call pl to procedures in namespace n with
annotation m, create a new procedure p2 with argument a replaced by an expression.

Change procedures: In every workflow w matching workpattern wp, create a new
workflow with the same name but a new version number in which procedure p1 is changed
into procedure p2 (which must have the same signature).

Edit subgraphs of a workflow: In every workflow w matching workpattern wp, create a
new workflow with the same name but a new version number in which the matching
workpattern subgraph is changed to a specified new workflow subgraph. (The supplied
replacement workflow subgraph must have the same signature.)

Replicate a workflow: Given a workflow w to replicate, for each procedure p2 returned
by query Q, create a new workflow w2(p2) by replacing occurrences of p in w with p2.
Each p2 returned by Q must have the same signature as p.

Edit metadata: In every workflow w matching workpattern wp, edit annotations on
datasets output by the subgraph matched by wp, changing the value of predicate status to
newvalue.

4 Query examples drawn from fMRI science use cases

The capabilities that we have described are only interesting if they provide utility to users
addressing real data analysis problems. In this section we show such use cases, drawing
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examples relevant to the field of functional MRI research [HSMO02]. We use the

categorization of queries introduced earlier in section 3.

Virtual Data Relationship Queries

e Find all the procedures in namespace /pub/bin/std that have inputs of type
Subjectimage and outputs of type ThumbNaillmage.

e Find all alignlinear calls (including all arguments), in XML format, with argument
model=rigid, and which generated more than 10,000 page faults, on ia64 processors.

e Find all calls to procedure alignlinear, and their runtimes, with argument model=rigid
that ran in less than 30 minutes on non-ia64 processors.

¢ Find the average runtime of all alignlinear calls with argument model=rigid that ran in
less than 30 minutes.

e Find all procedure calls within workflow /prod/2005/0305/prep whose inputs were
linearly aligned with model=affine

Annotation Queries

¢ Find all the datasets that have metadata annotation studyModality with values speech,
visual or audio. Show all the annotation tags of this set of datasets.

e Show the values of all annotation predicates developerName of procedures that accept
or produce an argument of type Study with predicate studyModality=audio.

Lineage Queries

e  Given the workpattern:

align (model=affine) = reslice (axis=x, intensify=3) = softmean

find all output datasets of softmean calls that were linear-aligned with model= affine.
(l.e., “where softmean was preceded in the workflow, directly or indirectly, by an
alignlinear call with argument model=affine”)

e Find all output datasets of softmean that were resliced with intensify=3. (Here we
want a softmean that is directly preceded by the requested pattern.)

Combined Queries

e Find procedures that take an ImageAtlas dataset and a Date as arguments, have been
called with dataset atlas.std.2005.img, and have annotation QALevel with value > 5.6.

e Find all metadata tags study-type on result datasets that were linearly aligned with
parameter model=affine and with an input dataset annotated with center set to
UofChicago.

¢ Find the output dataset names (and all their metadata tags) that were linearly aligned
with model=affine and with input LFN metadata center=UChicago.

¢ Find all the metadata tags school with values in the set (UIUC, UChicago, UIC) of
output datasets of softmean.

e Find all the metadata tags school with values in set (UIUC, UChicago, UIC) of
outputs of softmean that were aligned with model=affine.

¢ Find all the metadata tags study on results of softmean that were linearly aligned with
model= affine, and whose output datasets have annotation state = IL.

5 Implementation and Experience

The VDS implementation of virtual data mechanisms allows for declarative
specification of data, procedures, computations and their relationships, using a Virtual data
Language, VDL [FV+02]. VDL definitions and provenance data is stored in a “virtual data
catalog” (VDC), typically implemented as a relational database and accessed via SQL. We
employ an adapter layer to allow the use of different relational database implementations,
and support the use of XML databases for the VDC. The actual physical schema used in
our implementation is slightly more complex than the logical-level model shown in Figure
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1, but captures essentially the same information. The graph structure of workflow objects
is currently maintained in an external XML document. VDC queries are parsed and
translated into SQL or XQuery/XPath statements to apply against the VDC database.

The complete set of queries described here — notably those for lineage-graph-matching
multi-dimension processing, and annotation date/owner — are still under development.

For metadata, the physical schema uses a separate value table for each of the 5 metadata
value types supported (string, int, float, date, boolean). This enables us to utilize native
database searches that treat the data type of the object properly and efficiently (e.g., proper
comparison and collation for floating point numbers and dates).

Requests to derive virtual data products are mapped into workflows that may execute at
multiple distributed locations. Runtime provenance is obtained by executing VDL
procedures under a uniform parent-process wrapper that collects information about the
execution of the child application, and its derived files, using OS services. This
information is then routed back to the workflow enactment engine via embedded steps in
the workflow and saved in the virtual data catalog as invocation records.

An example of the use of virtual data provenance recording is seen in the analysis of
provenance information captured by the ATLAS high energy physics experiment to
generate simulated events using VDS from 6/2004 through 12/2005. In this period, 20
different simulation procedures were defined in a central US-ATLAS VDC located at
Brookhaven National Lab. This virtual data catalog captured 1.2M run-time (retrospective)
provenance records, of which 574K described procedure invocations detailed in the same
number of prospective provenance records in the database. 447K unique simulation
datasets (logical files) were derived from these invocations.

We can probe the provenance in this catalog with queries that physicists can usefully
employ to search for and assess these simulation results. Questions like the following
(translated to SQL) can be easily answered (with actual results shown):

Q: List all the procedures that have argument name ‘cleanLevel':
=> brureconx evgenx ... G4simulx g4simx g4simxM pileup testreconx

Q: How many jobs running procedures with argument name ‘cleanLevel' were run on

Linux 2.4.28 kernels?
=> g4digitx 39
g4simx 340
Q: List calls of procedure ‘'gdsimx’ with argument eta_min=-5.0 and eta_max=5.0 that

were run on 2.4.28 kernels, in Dec 2004?
=> g4simx.CPE 4922 15
g4simx.CPE_4922 202
(total 285 calls)

Another application of VDS to capture and leverage provenance information is in the
QuarkNet nationwide physics education project [BG+05]. In this project, data from cosmic
ray detectors located in about 200 high schools in the US uploaded raw data into a data
analysis portal driven by VDS. The raw data was annotated and then processed with a set
of analysis tools to plot cosmic ray activity under a variety of experimental conditions and
derive and document scientific conclusions, modeling closely the processes used in
experimental physics collaborations. In this application trial 108 different procedures were
used to process 6,330 files (total raw and derived) and to annotate them with 134,834
metadata tuples. A sample query of the annotations on a data file (a flux study result
derived from data gathered by detector 180 channel 1 on 07/30/2004) yields:

project: cosmic city: Batavia

group: fermigroup state: IL

study: flux creationdate: 2005-01-13 17:44:20.512
detectorid: 180 rawdate: 2004-07-30 19:42:57.0

A query to select datasets based on annotations, such as “find all the blessed data from
Fermilab” is expressed in SQL as:
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select name from anno_lfn f, anno bool b where f.mkey='blessed' and
b.value=true and f.id=b.id intersect select name from anno_lfn f2,
anno_text t where f2.mkey='school' and t.value='Fermilab'

and f2.id=t.id

which returns: 80.2004.0730.35 ... 999.2005.0604 .0

6 Related Work

Work on provenance in database systems has focused on determining the source data
(tuples) used to produce an item. Cui and Widom [CW00, CWWO0Q] record the relational
queries used to construct materialized views in a data warehouse, and then exploit this
information to find the source data that contributed to the given data item. Buneman et al.
[BKTO1] distinguish between why-provenance and where-provenance. The former
explains why a piece of data is in the database, i.e. what data sets (tuples) contributed to a
data item, and the latter keeps track of the location of a data item in its source. The
mutability of database tables and records poses significant challenges. In contrast, we
address provenance issues within the context of data analyses performed using programs
that are assumed not to modify their input datasets. In this context, we can go beyond why
and where to address issues of how a data product was (or can be) derived, what are the
procedure definitions and annotations, and to which workflow the procedure belongs.

A few systems support provenance tracking in the scientific community. SAM
[MC+03] has a “laboratory notebook” model of provenance tracking in which metadata
can be added to data items stored in a repository. However, SAM does not define the
format or schema of the metadata. In myGrid, documentation about workflow execution is
recorded and stored in a user’s personal repository, along with other metadata [ZG+03], to
support personalized provenance tracking of bioinformatics services and workflows.
Szomszor and Moreau [SMO03] propose a service-based architecture for recording
provenance in a Grid environment. They rely on a workflow enactment engine to submit
service invocation information to a provenance service. In [GM+05], Moreau et al
describes an implementation independent architecture for provenance systems. The paper
covers the logical architecture where p-assertions can be submitted and retrieved from a p-
store by various actors, and the process architecture for system security and distribution.

One major difference of our system is that we support retrospective and prospective
provenance, which enables powerful queries and composition capabilities, and high
fidelity (while practical) recording. In contrast to Moreau et al, we have a specific schema
that keeps the “backbone” of what we feel is the most critical part of provenance
information, in addition to general purpose assertions. The two schemas can in fact
converge: the Moreau schema can subsume the information we describe here, and we can
integrate the information of the Moreau schema (in addition to our custom-tailored virtual
data schema) by using a more general RDF model for our metadata annotations. With such
a schema, metadata annotations can be interpreted broadly, and any annotation can be
associated with our core data (logical file) and executable (transformation, workflow)
objects. The contribution of our work is the identification of a specific schema that permits
query and composition on the essential aspects of how data objects were derived in a long-
running analysis process of arbitrary duration and complexity, the integration of multiple
dimensions of provenance information into a unified, practical framework that provides
useful answers regarding the data analysis process, and the utilization of graph queries to
harvest the knowledge implicit in lineage information.



Zhao, Wilde, and Foster.

7 Conclusion and Future Directions

We have shown clear and practical examples of how provenance can be employed in a few
representative science processes (in neuroscience and physics) and how powerful queries
can be utilized to provide information that is highly valuable in the data analysis process.

While the model described here is based on application programs rather than Web
services, we believe the same model of provenance applies equally well in a service
oriented architecture, with no loss of generality.

Future extensions to the virtual data provenance model include maintaining a
transactional provenance trail of changes to metadata annotations, studies of scalability,
management of provenance data retention, and the application of the model to a distributed
web of provenance catalogs employing a similar schema.
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