
A Notation and System for Expressing and Executing

Cleanly Typed Workflows on Messy Scientific Data

Yong Zhao
1

Jed Dobson
2

Ian Foster
1,3

 Luc Moreau
4
 Michael Wilde

3

1 Department of Computer Science, University of Chicago, Chicago, IL 60637, U.S.A.
2 Department of Psychology, Dartmouth College, Hanover, NH 03755, U.S.A.

3 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
4 School of Electronics and Computer Science, University of Southampton, Southampton, U.K.

Abstract

The description, composition, and execution of

even logically simple scientific workflows are

often complicated by the need to deal with

“messy” issues like heterogeneous storage

formats and ad-hoc file system structures. We

show how these difficulties can be overcome

via a typed, compositional workflow notation

within which issues of physical representation

are cleanly separated from logical typing, and

by the implementation of this notation within

the context of a powerful runtime system that

supports distributed execution. The resulting

notation and system are capable both of

expressing complex workflows in a simple,

compact form, and of enacting those

workflows in distributed environments. We

apply our technique to cognitive neuroscience

workflows that analyze functional MRI image

data, and demonstrate significant reductions in

code size relative to other approaches.

1 Introduction

When constructing workflows that operate on large and

complex datasets, the ability to describe and introspect

on the types of both datasets and workflow components

can be invaluable, enabling discovery, type checking,

composition, and iteration over compound datasets.

Such typing should in principle be straightforward,

because of the hierarchical structure of most scientific

datasets. For example, in the functional Magnetic

Resonance Imaging (fMRI) applications used for

illustrative purposes in this paper, we find a hierarchical

structure of studies, groups, subjects, experimental runs,

and images (see Figure 1). A typical application might

build a new study by applying a program to each image

in each run for each subject in each group in a study.

Unfortunately, we find that such clean logical

structures are typically represented in terms of messy

physical constructs (e.g., metadata encoded in directory

and file names) employed in ad-hoc ways. For example,

the fMRI physical representation is a nested directory

structure, with ultimately a single 3D image (“volume”)

represented by two files located in the same directory,

distinguished only by file name suffix (Figure 1).

Such messy physical representations make program

development, composition, and execution unnecessarily

difficult. While we can incorporate knowledge of file

system layouts and file formats into application

programs and scripts, the resulting code is hard to write

and read, cannot easily be adapted to different

representations, and is not clearly typed.

Figure 1: fMRI structure, logical (left) & physical (right)

We have previously proposed that these concerns be

addressed by separating abstract structure and physical

representation [1]. (Woolf et al. [2] have recently

proposed similar ideas.) We describe here the design,

implementation, and evaluation of a notation that

achieve this separation.

We call this notation a virtual data language (VDL)

because its declarative structure allows datasets to be

defined prior to their generation and without regard to

their location and representation. For example, given a

VDL procedure “Run Y=foo_run(Run X)” that builds a

new run Y by applying a program ‘foo’ to each image in

run X (X and Y being dataset variables of type Run), we

can specify via the statement “run2=foo_run(run1)” that

dataset “run2” was (or, alternatively, will be) derived

from dataset “run1.” Independence from location and

DBIC Archive
 Study_2004.0521.hgd
 Group 1
 Subject_2004.e024
 volume_anat.img
 volume_anat.hdr
 bold1_001.img
 bold1_001.hdr
 ...
 bold1_275.img
 bold1_275.hdr
 ...
 bold5_001.img
 ...
 snrbold*_*
 ...air*
 ...
 Group 5
 ...
 Study ...

DBIC Archive
 Study #’2004 0521 hgd’
 Group #1
 Subject #’2004 e024’
 Anatomy
 high-res volume
 Functional Runs
 run #1
 volume #001
 ...
 volume #275
 ...
 run #5
 volume #001
 ...
 volume #242
 …
 Group #5
 ...
 Study #...

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 37

representation is achieved via the use of XML Dataset

Typing and Mapping (XDTM) [3] mechanisms, which

allow the types of datasets and procedures to be defined

abstractly, in terms of XML Schema. Separate mapping

descriptors then define how such abstract data

structures translate to physical representations. Such

descriptors specify, for example, how to access the

physical files associated with “run1” and “run2.”

VDL’s declarative and typed structure makes it easy

to define increasingly complex procedures via

composition. For example, a procedure “Subject Y =

foo_subject(Subject X)” might apply “foo_run” to each

run in a supplied subject. The repeated application of

such compositional forms can ultimately define large

directed acyclic graphs (DAGs) comprising thousands

or even millions of calls to “atomic transformations”

that each operate on just one or two image files.

The expansion of dataset definitions expressed in

VDL into DAGs, and the execution of these DAGs as

workflows in uni- or multi-processor environments, is

the task of an underlying virtual data system (VDS).

We have applied our techniques to fMRI data

analysis problems [4]. We have modeled a variety of

dataset types (and their corresponding physical

representations) and constructed and executed

numerous computational procedures and workflows

that operate on those datasets. Quantitative studies of

code size suggest that our VDL and VDS facilitate

workflow expression, and hence improve productivity.

We summarize the contributions of this paper as

follows:

(1) the design of a practical workflow notation and

system that separate logical and physical

representation to allow for the construction of

complex workflows on messy data using cleanly

typed computational procedures;

(2) solutions to practical problems that arise when

implementing such a notation within the context of

a distributed system within which datasets may be

persistent or transient, and both replicated and

distributed; and

(3) a demonstration and evaluation of the technology

via the encoding and execution of large fMRI

workflows in a distributed environment.

The rest of the paper is as follows. In Section 2, we

review related work. In Section 3, we introduce the

XDTM model and in Section 4 we describe VDL, using

an fMRI application for illustration. In Section 5 we

describe our implementation, and in Section 6 we

conclude with an assessment of results and approach.

2 Related Work

The Data Format Description Language (DFDL)

 [5], like XDTM, uses XML Schema to describe abstract

data models that specify data structures independent

from their physical representations. DFDL is concerned

with describing legacy data files and complex binary

formats, while XDTM focuses on describing data that

spans files and directories. Thus, the two systems can

potentially be used together.

XPDL [6], BPEL, and WSDL also use XML

Schema to describe data or message types, but assume

that data is represented in XML; in contrast, XDTM can

describe “messy” real-world data. Ptolemy [7] and

Kepler [8] provide a static typing system; Taverna [9]

and Triana [10] do not mandate typing. The ability to

map logical types from/to physical representations is

not provided by these languages and systems.

 When composing programs into workflows, we

must often convert logical types and/or physical

representations to make data accessible to downstream

programs. XPDL employs scripting languages such as

JavaScript to select subcomponents of a data type, and

BPEL uses XPath expressions in Assign statements for

data conversion. Our VDL permits the declarative

specification of a rich set of data conversion operations

on composite data structures and substructures.

BPEL, YAWL, Taverna, and Triana emphasize web

service invocation, while Ptolemy, Kepler, and XPDL

are concerned primarily with composing applications.

XDTM defines an abstract transformation interface that

is agnostic to the procedure invoked, and its binding

mechanism provides the flexibility to invoke either web

services or applications as needed.

VDL’s focus on DAGs limits the range of programs

that can be expressed relative to some other systems.

However, we emphasize that workflows similar to those

presented here are extremely common in scientific

computing, in domains including astronomy,

bioinformatics, and geographical information systems.

VDL can be extended with conditional constructs (for

example) if required, but we have not found such

extensions necessary to date.

Many workflow languages allow sequential,

parallel, and recursive patterns, but do not directly

support iteration. Taverna relies on its workflow engine

to run a process multiple times when a collection is

passed to a singleton-argument process. Kepler adopts a

functional operator ‘map’ to apply a function that

operates on singletons to collections. VDL’s typing

supports flexible iteration over datasets—and also type

checking, composition, and selection.

3 XDTM Overview

In XDTM, a dataset’s logical structure is specified

via a subset of XML Schema, which defines primitive

scalar data types such as Boolean, Integer, String, Float,

and Date, and also allows for the definition of complex

types via the composition of simple and complex types.

A dataset’s physical representation is defined by a

mapping descriptor, which describes how each element

in the dataset’s logical schema is stored in, and fetched

38 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

from, physical structures such as directories, files, and

database tables. In order to permit reuse for different

datasets, mapping descriptors can refer to external

parameters for such things as dataset location(s).

In order to access a dataset, we need to know three

things: its type schema, its mapping descriptor, and the

value(s) of any external parameter(s). These three

components can be grouped to form a dataset handle.

Note that multiple mappings may be defined for the

same logical schema (i.e., for a single logical type). For

example, an array of numbers might in different

contexts be physically represented as a set of relations,

a text file, a spreadsheet, or an XML document.

XDTM defines basic constructs for defining and

associating physical representations with XML

structures. However, it does not speak to how we write

programs that operate on XDTM-defined data: a major

focus of the work described here.

4 XDTM-Based Virtual Data Language

Our XDTM-based Virtual Data Language (VDL)—

derived loosely from an earlier VDL [11], which dealt

solely with untyped files—allows users to define

procedures that accept, return, and operate on datasets

with type, representation, and location defined by

XDTM. We introduce the principal features of VDL via

an example from fMRI data analysis.

4.1 Application Example

fMRI datasets are derived by scanning the brains of

subjects as they perform cognitive or manual tasks. The

raw data for a typical study might consist of three

subject groups with 20 subjects per group, five

experimental runs per subject, and 300 volume images

per run, yielding 90,000 volumes and over 60 GB of

data. A fully processed and analyzed study dataset can

contain over 1.2 million files. In a typical year at the

Dartmouth Brain Imaging Center, about 60 researchers

preprocess and analyze about 20 concurrent studies.

Experimental subjects are scanned once to obtain a

high-resolution image of their brain anatomy

(“anatomical volume”), then scanned with a low-

resolution imaging modality at rapid intervals to

observe the effects of blood flow from the “BOLD”

(blood oxygenated level dependant) signal while

performing some task (“functional runs”). These

images are pre-processed and subjected to intensive

analysis that begins with image processing and

concludes with a statistical analysis of correlations

between stimuli and neural activity.

4.2 VDL Type System

VDL uses a C-like syntax to represent XML Schema

types. (There is a straightforward mapping from this

syntax to XML Schema.) For example, the first twelve

lines of Figure 2 include the VDL types that we use to

represent the data objects of Figure 1. (We discuss the

procedures later.) Some corresponding XML Schema

type definitions are in Figure 3. A Volume contains a

3D image of a volumetric slice of a brain image,

represented by an Image (voxels) and a Header

(scanner metadata). As we do not manipulate the

contents of those objects directly within this VDL

program, we define their types simply as (opaque)

String. A time series of volumes taken from a

functional scan of one subject, doing one task, forms a

Run. In typical experiments, each Subject has multiple

input and normalized runs, and anatomical data, Anat.

Figure 2: VDL Dataset Type and Procedure Examples

Specific output formats involved in processing raw

input volumes and runs may include outputs from

various image processing tools, such as the automated

image registration (AIR) suite. The type Air

corresponds to one dataset type created by these tools.

type Volume { Image img; Header hdr; }
type Image String;
type Header String;
type Run { Volume v[]; }
type Anat Volume;
type Subject { Anat anat; Run run []; Run snrun []; }
type Group { Subject s[]; }
type Study { Group g[]; }
type Air String;
type AirVector { Air a[]; }
type Warp String;
type NormAnat {Anat aVol; Warp aWarp; Volume nHires;}
airsn_subject(
 Subject s, Volume atlas, Air ashrink, Air fshrink) {
 NormAnat a = anatomical(s.anat, atlas, ashrink);
 Run r, snr;
 foreach r in s.run {
 snr = functional (r, a, fshrink);
 s.snrun[name(r)] = snr;
 }
}
(Run snr) functional(Run r, NormAnat a, Air shrink) {
 Run yroRun = reorientRun(r , "y");
 Run roRun = reorientRun(yroRun , "x");
 Volume std = roRun[0];
 Run rndr = random_select(roRun, .1); //10% sample
 AirVector rndAirVec =
 align_linearRun(rndr, std, 12, 1000, 1000, [81,3,3]);
 Run reslicedRndr = resliceRun(rndr,rndAirVec,"o","k");
 Volume meanRand = softmean(reslicedRndr, "y", null);
 Air mnQAAir =
 alignlinear(a.nHires, meanRand,6,1000,4, [81,3,3]);
 Volume mnQA = reslice(meanRand, mnQAAir, "o","k");
 Warp boldNormWarp =
 combinewarp(shrink, a.aWarp, mnQAAir);
 Run nr = reslice_warp_run(boldNormWarp, roRun);
 Volume meanAll = strictmean (nr, "y", null)
 Volume boldMask = binarize(meanAll, "y");
 snr = gsmoothRun(nr, boldMask, 6, 6, 6);
}

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 39

4.3 Procedures

Datasets are operated on by procedures, which take

XDTM data as input, perform computations on those

data, and produce XDTM data as output. An atomic

procedure defines an interface to an executable program

or service (more on this below); a compound procedure

composes calls to atomic procedures, compound

procedures, and/or foreach statements.

A VDL procedure can be viewed as a named

workflow template. It defines a workflow comprising

either a single node (atomic procedure) or multiple

nodes (compound procedure). It is a template in that its

arguments are formal not actual parameters; a call to a

VDL procedure instantiates those arguments to define a

concrete workflow. Shared variables in the body of a

compound procedure specify data dependencies and

thus the directed arcs for the DAG corresponding to the

compound procedure’s workflow.

Figure 3: Type Definitions in XML Schema

We use as our illustrative example a workflow,

AIRSN, that performs spatial normalization for pre-

processing raw fMRI data prior to analysis. AIRSN

normalizes sets of time series of 3D volumes to a

standardized coordinate system and applies motion

correction and Gaussian smoothing. Figures 4 and 5

show two views of the most data-intensive segment of

the AIRSN workflow, which processes the data from

the functional runs of a study. Figure 4 is a high-level

representation in which each oval represents an

operation performed on an entire Run. Figure 5 expands

the workflow to the Volume level, for a dataset of 10

functional volumes. (The alert reader may note that the

random_select call is missing; this is an unimportant

artefact.) In realistic fMRI science runs, Runs might

include hundreds or thousands of volumes.

reorientRun

reorientRun

reslice_warpRun

random_select

alignlinearRun

resliceRun

softmean

alignlinear

combinewarp

strictmean

gsmoothRun

binarize

Figure 4: AIRSN workflow high-level representation

reorient/01

reorient/02

reslice_warp/22

alignlinear/03 alignlinear/07alignlinear/11

reorient/05

reorient/06

reslice_warp/23

reorient/09

reorient/10

reslice_warp/24

reorient/25

reorient/51

reslice_warp/26

reorient/27

reorient/52

reslice_warp/28

reorient/29

reorient/53

reslice_warp/30

reorient/31

reorient/54

reslice_warp/32

reorient/33

reorient/55

reslice_warp/34

reorient/35

reorient/56

reslice_warp/36

reorient/37

reorient/57

reslice_warp/38

reslice/04 reslice/08reslice/12

gsmooth/41

strictmean/39

gsmooth/42gsmooth/43gsmooth/44 gsmooth/45 gsmooth/46 gsmooth/47 gsmooth/48 gsmooth/49 gsmooth/50

softmean/13

alignlinear/17

combinewarp/21

binarize/40

reorient

reorient

alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

Figure 5: AIRSN workflow expanded to show all atomic

file operations, for a 10 volume run

We present a subset of the VDL for AIRSN in Figure 2.

The procedure functional expresses the steps in Figure

4; airsn_subject calls both functional and procedure

anatomical (not shown) to process a Subject.

The VDL foreach statement allows programs to

apply an operation to all components of a compound

data object. For example, airsn_subject creates in the

Subject dataset a new spatially normalized Run for each

raw Run. Such procedures define how the workflow is

expanded as in Figure 5.

To apply a VDL procedure to a specific physical

dataset, we simply pass a reference to that dataset as an

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="http://www.fmri.org/schema/airsn.xsd"
 xmlns="http://www.fmri.org/schema/airsn.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Image">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>

 <xs:simpleType name="Header">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>

 <xs:complexType name="Volume">
 <xs:sequence>
 <xs:element name="img" type="Image"/>
 <xs:element name="hdr" type="Header"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Run">

<xs:sequence minOccurs="0 maxOccurs="unbounded">
 <xs:element name="v" type="Volume"/>
 </xs:sequence>
 </xs:complexType>

</xs:schema>

40 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

actual parameter. The resulting call will execute

correctly regardless of the physical representation of a

passed dataset (assuming that the dataset and procedure

have matching logical types). Internally, dataset

references take the form of handles, which, as described

in Section 3, contain type, mapping, and location

information. As in languages in which every variable is

an object reference, handles are never seen by the user.

4.4 Invoking Programs and Services

A workflow such as Figure 2 must ultimately invoke

external executable programs and/or Web Services.

VDL atomic procedures define the necessary

interfaces, specifying the name of the program or

service to be invoked, how to set up its execution

environment, how program arguments or service

messages should be mapped from and to VDL

procedure arguments, and what physical data objects

need to be moved to and from remote execution sites.

Figure 6 Program Invocation

For example, the procedure alignlinear called in

Figure 2 defines a VDL interface to the AIR utility of

the same name. There are two important things to

understand about this definition. First, the VDS ensures

that if this call is executed on a remote computer (as is

usually the case in a distributed environment), the

physical representations of datasets passed as input

arguments are transferred to the remote site, thus

ensuring that the executable can access the required

physical files. In the case of output data (e.g., “Air a”),

the physical data is left on the remote site, registered in

a replica location service, and optionally copied to

another specified site to create an additional replica

(which often serves as an archival copy).

Second, the statements in the body assemble the

command to invoke the program, so that for example

the VDL call:

Air a = alignlinear(t1a, t3, 12, 1000, 1000, [81 3 3])
requests the execution of the following command:

alignlinear a.air t1a.hdr t3.hdr -m 12 \
 -t1 1000 -t2 1000 -s 81 3 3

Alternative atomic procedures can be provided to

specify Web Service interfaces to the utilities. These

alternative procedures would implement the same

procedure prototype, but provide a different body.

5 Implementation

We have developed a prototype system that can process

VDL type definitions and mappings, convert a typed

workflow definition into an executable DAG, expand

DAG nodes dynamically to process sub-components of

a compound dataset, and submit and execute the

resulting DAG in a Grid environment. The separation

of dataset type and physical representation that we

achieve with VDL can facilitate various runtime

optimizations and graph rewriting operations [12].

Our prototype does not yet include a parser for the

syntax presented here. However, the prototype does

implement the runtime operations needed to support

typed VDL dataset processing and execution, which is

the principal technical challenge of implementing VDL.

We have also verified that we can invoke equivalent

services and applications from the same VDL.

The prototype extends an earlier VDS

implementation with features to handle data typing and

mapping. We use the VDS graph traversal mechanism

to generate an abstract DAG in which transformations

are not yet tied to specific applications or services, and

data objects are not yet bound to specific locations and

physical representations. The extended VDS also

enhances the DAG representation by introducing

“foreach” nodes (in addition to the existing “atomic”

nodes) to represent foreach statements in a VDL

procedure. These nodes are expanded at runtime (see

Section 5.2), thus enabling datasets to have a

dynamically determined size.

The abstract DAG is concretized by a Grid planner

called Euryale, which produces a concrete DAG that,

for each node in the input abstract DAG, performs the

following steps. (See Sections 5.1 and 5.2 for details on

how Euryale performs data mapping during these steps,

and expands foreach statements, respectively.)

1. Preprocess:

if (atomic procedure node) {

 identify node inputs and outputs;

 choose Grid site that meets job requirements;

 locate and transfer inputs to that site;

 }

 else if (foreach node)

 expand foreach statement(s) into sub-dag(s);

2. Execute: Submit job or sub-DAG; wait for it to

execute.

3. Postprocess: Check job exit status; transfer and

register outputs; cleanup.

The resulting concrete DAG is executed by the

DAGman (“DAG manager”) tool. DAGman provides

many necessary facilities for workflow execution, such

as logging, job status monitoring, workflow persistence,

and recursive fault recovery. DAGman submits jobs to

Grid sites via the Globus GRAM protocol.

(Air out) alignlinear(Volume std, Volume v,
 Int m, Int t1, Int t2, Int s[]) {
 argument = out;
 argument = get_member(std, hdr);
 argument = get_member (v, hdr);
 argument = "-m " m;
 argument = "-t1" t1;
 argument = "-t2" t2;
 argument = "-s " s[0] s[1] s[2];
}

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 41

5.1 Data Mapping

The Eurayle planner needs to operate on the physical

data that lies behind the logical types defined in VDL

procedures. Such operations are accessed via a mapping

descriptor associated with the dataset, which controls

the execution of a mapping driver used to map between

physical and abstract representations. In general, a

mapping driver must implement the functions create-

dataset, store-member, get-member, and get-member-

list. Our prototype employs a table-driven approach to

implement a mapping driver for file-system-stored

datasets. Each table entry specifies:
 name: the data object name

 pattern: the pattern used to match file names

 mode: FILE (find matches in directory)

 RLS (find matches via replica location service),

 ENUM (dataset content is enumerated)

 content: used in ENUM mode to list content

When mapping an input dataset, this table is

consulted, the pattern is used to match a directory or

replica location service according to the mode, and the

members of the dataset are enumerated in an in-

memory structure. This structure is then used to expand

foreach statements and to set command-line arguments.

For example, recall from Figure 1 that a Volume is

physically represented as an image/header file pair, and

a Run as a set of such pairs. Furthermore, multiple Runs

may be stored in the same directory, with different

Runs distinguished by a prefix and different Volumes

by a suffix. To map this representation to the logical

Run structure, the pattern ‘boldN*’ is used to identify

all pairs in Run N at a specified location. Thus, the

mapper, when applied to the following eight files,

identifies two runs, one with three Volumes (Run 1) and

the other with one (Run 2).

bold1_001.img bold1_001.hdr

bold1_002.img bold1_002.hdr

bold1_003.img bold1_003.hdr

bold2_007.img bold2_007.hdr

5.2 Dynamic Node Expansion

A node containing a foreach statement must be

expanded prior to execution into a set of nodes: one per

component of the compound data object specified in the

foreach. This expansion is performed at runtime: when

a foreach node is scheduled for execution, the

appropriate mapper function is called on the specified

dataset to determine its members, and for each member

of the dataset identified (e.g., for each Volume in a Run)

a new job is created in a “sub-DAG.”

The new sub-DAG is submitted for execution, and

the main job waits for the sub-DAG to finish before

proceeding. A post-script for the main job takes care of

the transfer and registration of all output files, and the

collection of those files into the output dataset. This

workflow expansion process may itself recurse further

if the subcomponents themselves also include foreach

statements. DAGman provides workflow persistence

even in the face of system failures during recursion.

5.3 Optimizations and Graph Transformation

Since dataset mapping and node expansion are carried

out at run time, we can use graph transformations to

apply optimization strategies. For example, in the

AIRSN workflow, some processes, such as the reorient

of a single Volume, only take a few seconds to run. It is

inefficient to schedule a distinct process for each

Volume in a Run. Rather, we can combine multiple such

processes to run as a single job, thus reducing

scheduling and queuing overhead.

As a second example, the softmean procedure

computes the mean of all Volumes in a Run. For a

dataset with large number of Volumes, this stage is a

bottleneck as no parallelism is engaged. There is also a

practical issue: the executable takes all Volume

filenames as command line arguments, which can

exceed limits defined by the Condor and UNIX shell

tools used within our VDS implementation. Thus, we

transform this node into a tree in which leaf nodes

compute over subsets of the dataset. The process

repeats until we get a single output. The shape of this

tree can be tuned according to available computing

nodes and dataset sizes to achieve optimal parallelism

and avoid command-line length limitations.

6 Evaluation

We have used our prototype system to execute a range

of fMRI workflows with various input datasets on the

Dartmouth Green Grid, which comprises five 12-node

clusters. The dataset mapping mechanism allowed us to

switch input datasets (e.g., from a Run of 80 volumes to

another Run of 120 volumes) without changing either

the workflow definition or the execution system. All

workflows run correctly and achieve speedup.

The primary focus of our work is to increase

productivity [13]. As an approximate measure of this,

we compare in Table 1 the lines of code needed to

express five different fMRI workflows, coded in our

new VDL, with two other approaches, one based on ad-

hoc shell scripts (“Script,” able to execute only on a

single computer) and a second (“Generator”) that uses

Perl scripts to generate older, “pre-XDTM” VDL.

Table 1: Lines of code with different workflow encodings

Workflow Script Generator VDL

GENATLAS1 49 72 6

GENATLAS2 97 135 10

FILM1 63 134 17

FEAT 84 191 13

AIRSN 215 ~400 37

42 SIGMOD Record, Vol. 34, No. 3, Sept. 2005

The new programs are smaller and more readable—

and also provide for type checking, provenance

tracking, parallelism, and distributed execution.

7 Conclusions

We have designed a typed workflow notation and

system that allows workflows to be expressed in terms

of declarative procedures that operate on XML data

types and then executed on diverse physical

representations and on distributed computers. We show

that this notation and system can be used to express

large amounts of distributed computation easily.

The productivity leverage of this approach is

apparent: a small group of developers can define VDL

interfaces to the utility packages used in a research

domain and then create a library of dataset-iteration

functions. This library encapsulates low-level details

concerning how data is grouped, transported,

catalogued, passed to applications, and collected as

results. Other scientists can then use this library to

construct workflows without needing to understand

details of physical representation, and furthermore are

protected by the XDTM type system from forming

workflows that are not type compliant. In addition, the

data management conventions of a research group can

be encoded in XDTM mapping functions, thus making

it easier to maintain order in dataset collections that

may include tens of millions of files.

We next plan to automate the parsing steps that

were performed manually in our prototype, and to

create a complete workflow development and execution

environment for our XDTM-based VDL. We will also

investigate support for services, automation of type

coercions between differing physical representations,

and recording of provenance for large data collections.

Acknowledgements.

This work was supported by the National Science

Foundation GriPhyN Project, grant ITR-800864, the

Mathematical, Information, and Computational

Sciences Division subprogram of the Office of

Advanced Scientific Computing Research, U.S.

Department of Energy, and by the National Institutes of

Health, grants NS37470 and NS44393. We are grateful

to Scott Grafton of the Dartmouth Brain Imaging

Center, and to Jens Voeckler, Doug Scheftner, Ewa

Deelman, Carl Kesselman, and the entire Virtual Data

System team for discussion, guidance, and assistance.

References

[1] Foster, I., Voeckler, J., Wilde, M., Zhao, Y. The Virtual

Data Grid: A New Model and Architecture for Data-

intensive Collaboration. Conference on Innovative Data

Systems Research, Asilomar, CA, January 2003.

[2] Woolf, A., Cramer, R., Gutierrez, M., van Dam, K.,

Kondapalli, S., Latham, S., Lawrence, B., Lowry, R.,

O'Neill, K., Semantic Integration of File-based Data for

Grid Services. Workshop on Semantic Infrastructure for

Grid Computing Applications, 2005.

[3] Moreau, L., Zhao, Y., Foster, I., Voeckler, J. Wilde, M.,

XDTM: XML Dataset Typing and Mapping for

Specifying Datasets. European Grid Conference, 2005.

[4] Van Horn, J.D., Dobson, J., Woodward, J., Wilde, M.,

Zhao, Y., Voeckler, J., Foster, I. Grid-Based Computing

and the Future of Neuroscience Computation, Methods in

Mind, Cambridge: MIT Press (In Press).

[5] Beckerle, M., Westhead, M. GGF DFDL Primer.

Technical report, Global Grid Forum, 2004.

[6] XML Process Definition Language (XPDL) (WFMCTC-

1025). Technical report, Workflow Management

Coalition, Lighthouse Point, Florida, USA, 2002.

[7] Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J.,

Neuendorffer, S., Sachs, S., Xiong, Y. Taming

Heterogeneity – the Ptolemy Approach. Proceedings of

the IEEE, 91(1):127-144, January 2003.

[8] Altintas, I., Berkley, C., Jaeger, E., Jones, M.,

Ludäscher, B. and Mock, S., Kepler: An Extensible

System for Design and Execution of Scientific

Workflows. 16th Intl. Conference on Scientific and

Statistical Database Management, 2004.

[9] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M.,

Greenwood, M., Carver, T., Glover, K., Pocock, M.,

Wipat, A., Li, P. Taverna: A Tool for the Composition

and Enactment of Bioinformatics Workflows.

Bioinformatics Journal, 20(17):3045-3054, 2004.

[10] Churches, D., Gombas, G., Harrison, A., Maassen, J.,

Robinson, C., Shields, M., Taylor, I. Wang, I.

Programming Scientific and Distributed Workflow with

Triana Services. Concurrency and Computation:

Practice and Experience, 2005 (in press).

[11] Foster, I., Voeckler, J., Wilde, M., Zhao, Y. Chimera: A

Virtual Data System for Representing, Querying and

Automating Data Derivation. 14th Conference on

Scientific and Statistical Database Management, 2002.

[12] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta,

G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A.,

Cavanaugh, R., Koranda, S. Mapping Abstract

Workflows onto Grid Environments. Journal of Grid

Computing, 1(1). 2003.

[13] Gray, J., Liu, D., Nieto-Santisteban, M., Szalay, A.

Scientific Data Management in the Coming Decade.

Microsoft Research, MSR-TR-2005-10. 2005.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005 43

