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Abstract 

The description, composition, and execution of 

even logically simple scientific workflows are 

often complicated by the need to deal with 

“messy” issues like heterogeneous storage 

formats and ad-hoc file system structures. We 

show how these difficulties can be overcome 

via a typed, compositional workflow notation 

within which issues of physical representation 

are cleanly separated from logical typing, and 

by the implementation of this notation within 

the context of a powerful runtime system that 

supports distributed execution. The resulting 

notation and system are capable both of 

expressing complex workflows in a simple, 

compact form, and of enacting those 

workflows in distributed environments. We 

apply our technique to cognitive neuroscience 

workflows that analyze functional MRI image 

data, and demonstrate significant reductions in 

code size relative to other approaches. 

1 Introduction 

When constructing workflows that operate on large and 

complex datasets, the ability to describe and introspect 

on the types of both datasets and workflow components 

can be invaluable, enabling discovery, type checking, 

composition, and iteration over compound datasets. 

Such typing should in principle be straightforward, 

because of the hierarchical structure of most scientific 

datasets. For example, in the functional Magnetic 

Resonance Imaging (fMRI) applications used for 

illustrative purposes in this paper, we find a hierarchical 

structure of studies, groups, subjects, experimental runs, 

and images (see Figure 1). A typical application might 

build a new study by applying a program to each image 

in each run for each subject in each group in a study.  

Unfortunately, we find that such clean logical 

structures are typically represented in terms of messy 

physical constructs (e.g., metadata encoded in directory 

and file names) employed in ad-hoc ways. For example, 

the fMRI physical representation is a nested directory 

structure, with ultimately a single 3D image (“volume”) 

represented by two files located in the same directory, 

distinguished only by file name suffix (Figure 1).  

Such messy physical representations make program 

development, composition, and execution unnecessarily 

difficult. While we can incorporate knowledge of file 

system layouts and file formats into application 

programs and scripts, the resulting code is hard to write 

and read, cannot easily be adapted to different 

representations, and is not clearly typed. 

 
Figure 1: fMRI structure, logical (left) & physical (right) 

We have previously proposed that these concerns be 

addressed by separating abstract structure and physical 

representation  [1]. (Woolf et al. [2] have recently 

proposed similar ideas.) We describe here the design, 

implementation, and evaluation of a notation that 

achieve this separation. 

We call this notation a virtual data language (VDL) 

because its declarative structure allows datasets to be 

defined prior to their generation and without regard to 

their location and representation. For example, given a 

VDL procedure “Run Y=foo_run(Run X)” that builds a 

new run Y by applying a program ‘foo’ to each image in 

run X (X and Y being dataset variables of type Run), we 

can specify via the statement “run2=foo_run(run1)” that 

dataset “run2” was (or, alternatively, will be) derived 

from dataset “run1.” Independence from location and 
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representation is achieved via the use of XML Dataset 

Typing and Mapping (XDTM)  [3] mechanisms, which 

allow the types of datasets and procedures to be defined 

abstractly, in terms of XML Schema. Separate mapping 

descriptors then define how such abstract data 

structures translate to physical representations. Such 

descriptors specify, for example, how to access the 

physical files associated with “run1” and “run2.” 

VDL’s declarative and typed structure makes it easy 

to define increasingly complex procedures via 

composition. For example, a procedure “Subject Y = 

foo_subject(Subject X)” might apply “foo_run” to each 

run in a supplied subject. The repeated application of 

such compositional forms can ultimately define large 

directed acyclic graphs (DAGs) comprising thousands 

or even millions of calls to “atomic transformations” 

that each operate on just one or two image files.  

The expansion of dataset definitions expressed in 

VDL into DAGs, and the execution of these DAGs as 

workflows in uni- or multi-processor environments, is 

the task of an underlying virtual data system (VDS). 

We have applied our techniques to fMRI data 

analysis problems  [4]. We have modeled a variety of 

dataset types (and their corresponding physical 

representations) and constructed and executed 

numerous computational procedures and workflows 

that operate on those datasets. Quantitative studies of 

code size suggest that our VDL and VDS facilitate 

workflow expression, and hence improve productivity. 

We summarize the contributions of this paper as 

follows:  

(1) the design of a practical workflow notation and 

system that separate logical and physical 

representation to allow for the construction of 

complex workflows on messy data using cleanly 

typed computational procedures;  

(2) solutions to practical problems that arise when 

implementing such a notation within the context of 

a distributed system within which datasets may be 

persistent or transient, and both replicated and 

distributed; and  

(3) a demonstration and evaluation of the technology 

via the encoding and execution of large fMRI 

workflows in a distributed environment. 

The rest of the paper is as follows. In Section 2, we 

review related work. In Section 3, we introduce the 

XDTM model and in Section 4 we describe VDL, using 

an fMRI application for illustration. In Section 5 we 

describe our implementation, and in Section 6 we 

conclude with an assessment of results and approach. 

2 Related Work 

The Data Format Description Language (DFDL) 

 [5], like XDTM, uses XML Schema to describe abstract 

data models that specify data structures independent 

from their physical representations. DFDL is concerned 

with describing legacy data files and complex binary 

formats, while XDTM focuses on describing data that 

spans files and directories. Thus, the two systems can 

potentially be used together. 

XPDL  [6], BPEL, and WSDL also use XML 

Schema to describe data or message types, but assume 

that data is represented in XML; in contrast, XDTM can 

describe “messy” real-world data. Ptolemy  [7] and 

Kepler  [8] provide a static typing system; Taverna  [9] 

and Triana  [10] do not mandate typing. The ability to 

map logical types from/to physical representations is 

not provided by these languages and systems. 

 When composing programs into workflows, we 

must often convert logical types and/or physical 

representations to make data accessible to downstream 

programs. XPDL employs scripting languages such as 

JavaScript to select subcomponents of a data type, and 

BPEL uses XPath expressions in Assign statements for 

data conversion. Our VDL permits the declarative 

specification of a rich set of data conversion operations 

on composite data structures and substructures. 

BPEL, YAWL, Taverna, and Triana emphasize web 

service invocation, while Ptolemy, Kepler, and XPDL 

are concerned primarily with composing applications. 

XDTM defines an abstract transformation interface that 

is agnostic to the procedure invoked, and its binding 

mechanism provides the flexibility to invoke either web 

services or applications as needed. 

VDL’s focus on DAGs limits the range of programs 

that can be expressed relative to some other systems. 

However, we emphasize that workflows similar to those 

presented here are extremely common in scientific 

computing, in domains including astronomy, 

bioinformatics, and geographical information systems. 

VDL can be extended with conditional constructs (for 

example) if required, but we have not found such 

extensions necessary to date. 

Many workflow languages allow sequential, 

parallel, and recursive patterns, but do not directly 

support iteration. Taverna relies on its workflow engine 

to run a process multiple times when a collection is 

passed to a singleton-argument process. Kepler adopts a 

functional operator ‘map’ to apply a function that 

operates on singletons to collections. VDL’s typing 

supports flexible iteration over datasets—and also type 

checking, composition, and selection. 

3 XDTM Overview 

In XDTM, a dataset’s logical structure is specified 

via a subset of XML Schema, which defines primitive 

scalar data types such as Boolean, Integer, String, Float, 

and Date, and also allows for the definition of complex 

types via the composition of simple and complex types.  

A dataset’s physical representation is defined by a 

mapping descriptor, which describes how each element 

in the dataset’s logical schema is stored in, and fetched 
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from, physical structures such as directories, files, and 

database tables. In order to permit reuse for different 

datasets, mapping descriptors can refer to external 

parameters for such things as dataset location(s). 

In order to access a dataset, we need to know three 

things: its type schema, its mapping descriptor, and the 

value(s) of any external parameter(s). These three 

components can be grouped to form a dataset handle. 

Note that multiple mappings may be defined for the 

same logical schema (i.e., for a single logical type). For 

example, an array of numbers might in different 

contexts be physically represented as a set of relations, 

a text file, a spreadsheet, or an XML document.  

XDTM defines basic constructs for defining and 

associating physical representations with XML 

structures. However, it does not speak to how we write 

programs that operate on XDTM-defined data: a major 

focus of the work described here. 

4 XDTM-Based Virtual Data Language 

Our XDTM-based Virtual Data Language (VDL)—

derived loosely from an earlier VDL [11], which dealt 

solely with untyped files—allows users to define 

procedures that accept, return, and operate on datasets 

with type, representation, and location defined by 

XDTM. We introduce the principal features of VDL via 

an example from fMRI data analysis. 

4.1 Application Example 

fMRI datasets are derived by scanning the brains of 

subjects as they perform cognitive or manual tasks. The 

raw data for a typical study might consist of three 

subject groups with 20 subjects per group, five 

experimental runs per subject, and 300 volume images 

per run, yielding 90,000 volumes and over 60 GB of 

data. A fully processed and analyzed study dataset can 

contain over 1.2 million files. In a typical year at the 

Dartmouth Brain Imaging Center, about 60 researchers 

preprocess and analyze about 20 concurrent studies.  

Experimental subjects are scanned once to obtain a 

high-resolution image of their brain anatomy 

(“anatomical volume”), then scanned with a low-

resolution imaging modality at rapid intervals to 

observe the effects of blood flow from the “BOLD” 

(blood oxygenated level dependant) signal while 

performing some task (“functional runs”). These 

images are pre-processed and subjected to intensive 

analysis that begins with image processing and 

concludes with a statistical analysis of correlations 

between stimuli and neural activity. 

4.2 VDL Type System 

VDL uses a C-like syntax to represent XML Schema 

types. (There is a straightforward mapping from this 

syntax to XML Schema.) For example, the first twelve 

lines of Figure 2 include the VDL types that we use to 

represent the data objects of Figure 1. (We discuss the 

procedures later.) Some corresponding XML Schema 

type definitions are in Figure 3. A Volume contains a 

3D image of a volumetric slice of a brain image, 

represented by an Image (voxels) and a Header 

(scanner metadata). As we do not manipulate the 

contents of those objects directly within this VDL 

program, we define their types simply as (opaque) 

String. A time series of volumes taken from a 

functional scan of one subject, doing one task, forms a 

Run. In typical experiments, each Subject has multiple 

input and normalized runs, and anatomical data, Anat.  

 

Figure 2: VDL Dataset Type and Procedure Examples 

Specific output formats involved in processing raw 

input volumes and runs may include outputs from 

various image processing tools, such as the automated 

image registration (AIR) suite. The type Air 

corresponds to one dataset type created by these tools.  

type Volume { Image img; Header hdr; } 
type Image String; 
type Header String; 
type Run { Volume v[ ]; } 
type Anat Volume; 
type Subject { Anat anat; Run run [ ]; Run snrun [ ]; } 
type Group { Subject s[ ]; } 
type Study { Group g[ ]; } 
type Air String; 
type AirVector { Air a[ ]; } 
type Warp String; 
type NormAnat {Anat aVol; Warp aWarp; Volume nHires;} 
airsn_subject( 
              Subject s, Volume atlas, Air ashrink, Air fshrink ) { 
      NormAnat a = anatomical(s.anat, atlas, ashrink); 
      Run r, snr; 
      foreach r in s.run { 
            snr = functional ( r, a, fshrink ); 
            s.snrun[ name(r) ] = snr; 
      } 
} 
(Run snr) functional( Run r, NormAnat a, Air shrink ) { 
     Run yroRun  = reorientRun( r , "y" ); 
     Run roRun  = reorientRun( yroRun , "x" ); 
     Volume std  = roRun[0]; 
     Run rndr  = random_select(roRun, .1); //10% sample 
     AirVector rndAirVec = 
            align_linearRun(rndr, std, 12, 1000, 1000, [81,3,3]); 
     Run reslicedRndr = resliceRun( rndr,rndAirVec,"o","k"); 
     Volume meanRand = softmean(reslicedRndr, "y", null ); 
     Air mnQAAir =  
            alignlinear(a.nHires, meanRand,6,1000,4, [81,3,3]); 
     Volume mnQA = reslice(meanRand, mnQAAir, "o","k"); 
     Warp boldNormWarp =  
             combinewarp(shrink, a.aWarp, mnQAAir); 
     Run nr = reslice_warp_run( boldNormWarp, roRun ); 
     Volume meanAll = strictmean ( nr, "y", null ) 
     Volume boldMask = binarize( meanAll, "y" ); 
     snr = gsmoothRun( nr, boldMask, 6, 6, 6); 
}
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4.3 Procedures 

Datasets are operated on by procedures, which take 

XDTM data as input, perform computations on those 

data, and produce XDTM data as output. An atomic 

procedure defines an interface to an executable program 

or service (more on this below); a compound procedure 

composes calls to atomic procedures, compound 

procedures, and/or foreach statements.  

A VDL procedure can be viewed as a named 

workflow template. It defines a workflow comprising 

either a single node (atomic procedure) or multiple 

nodes (compound procedure). It is a template in that its 

arguments are formal not actual parameters; a call to a 

VDL procedure instantiates those arguments to define a 

concrete workflow. Shared variables in the body of a 

compound procedure specify data dependencies and 

thus the directed arcs for the DAG corresponding to the 

compound procedure’s workflow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Type Definitions in XML Schema 

We use as our illustrative example a workflow, 

AIRSN, that performs spatial normalization for pre-

processing raw fMRI data prior to analysis. AIRSN 

normalizes sets of time series of 3D volumes to a 

standardized coordinate system and applies motion 

correction and Gaussian smoothing. Figures 4 and 5 

show two views of the most data-intensive segment of 

the AIRSN workflow, which processes the data from 

the functional runs of a study. Figure 4 is a high-level 

representation in which each oval represents an 

operation performed on an entire Run. Figure 5 expands 

the workflow to the Volume level, for a dataset of 10 

functional volumes. (The alert reader may note that the 

random_select call is missing; this is an unimportant 

artefact.) In realistic fMRI science runs, Runs might 

include hundreds or thousands of volumes. 

reorientRun

reorientRun

reslice_warpRun
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alignlinearRun
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alignlinear
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Figure 4: AIRSN workflow high-level representation 
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Figure 5: AIRSN workflow expanded to show all atomic 

file operations, for a 10 volume run 

We present a subset of the VDL for AIRSN in Figure 2. 

The procedure functional expresses the steps in Figure 

4; airsn_subject calls both functional and procedure 

anatomical (not shown) to process a Subject. 

The VDL foreach statement allows programs to 

apply an operation to all components of a compound 

data object. For example, airsn_subject creates in the 

Subject dataset a new spatially normalized Run for each 

raw Run. Such procedures define how the workflow is 

expanded as in Figure 5. 

To apply a VDL procedure to a specific physical 

dataset, we simply pass a reference to that dataset as an 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema 
targetNamespace="http://www.fmri.org/schema/airsn.xsd" 
           xmlns="http://www.fmri.org/schema/airsn.xsd" 
           xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 
  <xs:simpleType name="Image"> 
    <xs:restriction base="xs:string"/> 
  </xs:simpleType> 
 
  <xs:simpleType name="Header"> 
    <xs:restriction base="xs:string"/> 
  </xs:simpleType> 
 
  <xs:complexType name="Volume"> 
    <xs:sequence> 
      <xs:element name="img" type="Image"/> 
      <xs:element name="hdr" type="Header"/> 
    </xs:sequence> 
  </xs:complexType> 
 
  <xs:complexType name="Run"> 

<xs:sequence minOccurs="0 maxOccurs="unbounded"> 
      <xs:element name="v" type="Volume"/> 
    </xs:sequence> 
  </xs:complexType> 
 
</xs:schema> 
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actual parameter. The resulting call will execute 

correctly regardless of the physical representation of a 

passed dataset (assuming that the dataset and procedure 

have matching logical types). Internally, dataset 

references take the form of handles, which, as described 

in Section  3, contain type, mapping, and location 

information. As in languages in which every variable is 

an object reference, handles are never seen by the user. 

4.4 Invoking Programs and Services 

A workflow such as Figure 2 must ultimately invoke 

external executable programs and/or Web Services. 

VDL atomic procedures define the necessary 

interfaces, specifying the name of the program or 

service to be invoked, how to set up its execution 

environment, how program arguments or service 

messages should be mapped from and to VDL 

procedure arguments, and what physical data objects 

need to be moved to and from remote execution sites.  

 

 

 

 

 

 

 

 

 

 

Figure 6 Program Invocation 

For example, the procedure alignlinear called in 

Figure 2 defines a VDL interface to the AIR utility of 

the same name. There are two important things to 

understand about this definition. First, the VDS ensures 

that if this call is executed on a remote computer (as is 

usually the case in a distributed environment), the 

physical representations of datasets passed as input 

arguments are transferred to the remote site, thus 

ensuring that the executable can access the required 

physical files. In the case of output data (e.g., “Air a”), 

the physical data is left on the remote site, registered in 

a replica location service, and optionally copied to 

another specified site to create an additional replica 

(which often serves as an archival copy). 

Second, the statements in the body assemble the 

command to invoke the program, so that for example 

the VDL call: 

Air a = alignlinear(t1a, t3, 12, 1000, 1000, [81 3 3]) 
requests the execution of the following command: 

alignlinear a.air t1a.hdr t3.hdr -m 12 \ 
                                 -t1 1000 -t2 1000 -s 81 3 3 

Alternative atomic procedures can be provided to 

specify Web Service interfaces to the utilities. These 

alternative procedures would implement the same 

procedure prototype, but provide a different body. 

5 Implementation 

We have developed a prototype system that can process 

VDL type definitions and mappings, convert a typed 

workflow definition into an executable DAG, expand 

DAG nodes dynamically to process sub-components of 

a compound dataset, and submit and execute the 

resulting DAG in a Grid environment. The separation 

of dataset type and physical representation that we 

achieve with VDL can facilitate various runtime 

optimizations and graph rewriting operations  [12]. 

Our prototype does not yet include a parser for the 

syntax presented here. However, the prototype does 

implement the runtime operations needed to support 

typed VDL dataset processing and execution, which is 

the principal technical challenge of implementing VDL. 

We have also verified that we can invoke equivalent 

services and applications from the same VDL. 

The prototype extends an earlier VDS 

implementation with features to handle data typing and 

mapping. We use the VDS graph traversal mechanism 

to generate an abstract DAG in which transformations 

are not yet tied to specific applications or services, and 

data objects are not yet bound to specific locations and 

physical representations. The extended VDS also 

enhances the DAG representation by introducing 

“foreach” nodes (in addition to the existing “atomic” 

nodes) to represent foreach statements in a VDL 

procedure. These nodes are expanded at runtime (see 

Section 5.2), thus enabling datasets to have a 

dynamically determined size. 

The abstract DAG is concretized by a Grid planner 

called Euryale, which produces a concrete DAG that, 

for each node in the input abstract DAG, performs the 

following steps. (See Sections 5.1 and 5.2 for details on 

how Euryale performs data mapping during these steps, 

and expands foreach statements, respectively.) 

1. Preprocess: 

if (atomic procedure node) { 

   identify node inputs and outputs; 

          choose Grid site that meets job requirements; 

          locate and transfer inputs to that site; 

       } 

       else if (foreach node) 

           expand foreach statement(s) into sub-dag(s); 

2. Execute: Submit job or sub-DAG; wait for it to 

execute. 

3. Postprocess: Check job exit status; transfer and 

register outputs; cleanup. 

The resulting concrete DAG is executed by the 

DAGman (“DAG manager”) tool. DAGman provides 

many necessary facilities for workflow execution, such 

as logging, job status monitoring, workflow persistence, 

and recursive fault recovery. DAGman submits jobs to 

Grid sites via the Globus GRAM protocol. 

(Air out) alignlinear(Volume std, Volume v, 
                                    Int m, Int t1, Int t2, Int s[ ] ) { 
    argument = out; 
    argument = get_member(std, hdr); 
    argument = get_member (v, hdr); 
    argument = "-m " m; 
    argument = "-t1" t1; 
    argument = "-t2" t2; 
    argument = "-s " s[0] s[1] s[2]; 
} 
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5.1 Data Mapping 

The Eurayle planner needs to operate on the physical 

data that lies behind the logical types defined in VDL 

procedures. Such operations are accessed via a mapping 

descriptor associated with the dataset, which controls 

the execution of a mapping driver used to map between 

physical and abstract representations. In general, a 

mapping driver must implement the functions create-

dataset, store-member, get-member, and get-member-

list. Our prototype employs a table-driven approach to 

implement a mapping driver for file-system-stored 

datasets. Each table entry specifies: 
  name: the data object name 

  pattern: the pattern used to match file names 

  mode: FILE (find matches in directory) 

 RLS (find matches via replica location service), 

 ENUM (dataset content is enumerated) 

  content: used in ENUM mode to list content 

When mapping an input dataset, this table is 

consulted, the pattern is used to match a directory or 

replica location service according to the mode, and the 

members of the dataset are enumerated in an in-

memory structure. This structure is then used to expand 

foreach statements and to set command-line arguments. 

For example, recall from Figure 1 that a Volume is 

physically represented as an image/header file pair, and 

a Run as a set of such pairs. Furthermore, multiple Runs 

may be stored in the same directory, with different 

Runs distinguished by a prefix and different Volumes 

by a suffix. To map this representation to the logical 

Run structure, the pattern ‘boldN*’ is used to identify 

all pairs in Run N at a specified location. Thus, the 

mapper, when applied to the following eight files, 

identifies two runs, one with three Volumes (Run 1) and 

the other with one (Run 2). 

bold1_001.img    bold1_001.hdr 

bold1_002.img    bold1_002.hdr 

bold1_003.img    bold1_003.hdr 

bold2_007.img    bold2_007.hdr 

5.2 Dynamic Node Expansion 

A node containing a foreach statement must be 

expanded prior to execution into a set of nodes: one per 

component of the compound data object specified in the 

foreach. This expansion is performed at runtime: when 

a foreach node is scheduled for execution, the 

appropriate mapper function is called on the specified 

dataset to determine its members, and for each member 

of the dataset identified (e.g., for each Volume in a Run) 

a new job is created in a “sub-DAG.” 

The new sub-DAG is submitted for execution, and 

the main job waits for the sub-DAG to finish before 

proceeding. A post-script for the main job takes care of 

the transfer and registration of all output files, and the 

collection of those files into the output dataset. This 

workflow expansion process may itself recurse further 

if the subcomponents themselves also include foreach 

statements. DAGman provides workflow persistence 

even in the face of system failures during recursion. 

5.3 Optimizations and Graph Transformation 

Since dataset mapping and node expansion are carried 

out at run time, we can use graph transformations to 

apply optimization strategies. For example, in the 

AIRSN workflow, some processes, such as the reorient 

of a single Volume, only take a few seconds to run. It is 

inefficient to schedule a distinct process for each 

Volume in a Run. Rather, we can combine multiple such 

processes to run as a single job, thus reducing 

scheduling and queuing overhead. 

As a second example, the softmean procedure 

computes the mean of all Volumes in a Run. For a 

dataset with large number of Volumes, this stage is a 

bottleneck as no parallelism is engaged. There is also a 

practical issue: the executable takes all Volume 

filenames as command line arguments, which can 

exceed limits defined by the Condor and UNIX shell 

tools used within our VDS implementation. Thus, we 

transform this node into a tree in which leaf nodes 

compute over subsets of the dataset. The process 

repeats until we get a single output. The shape of this 

tree can be tuned according to available computing 

nodes and dataset sizes to achieve optimal parallelism 

and avoid command-line length limitations. 

6 Evaluation 

We have used our prototype system to execute a range 

of fMRI workflows with various input datasets on the 

Dartmouth Green Grid, which comprises five 12-node 

clusters. The dataset mapping mechanism allowed us to 

switch input datasets (e.g., from a Run of 80 volumes to 

another Run of 120 volumes) without changing either 

the workflow definition or the execution system. All 

workflows run correctly and achieve speedup.  

The primary focus of our work is to increase 

productivity [13]. As an approximate measure of this, 

we compare in Table 1 the lines of code needed to 

express five different fMRI workflows, coded in our 

new VDL, with two other approaches, one based on ad-

hoc shell scripts (“Script,” able to execute only on a 

single computer) and a second (“Generator”) that uses 

Perl scripts to generate older, “pre-XDTM” VDL.  

Table 1: Lines of code with different workflow encodings 

Workflow  Script Generator VDL 

GENATLAS1 49 72 6 

GENATLAS2 97 135 10 

FILM1 63 134 17 

FEAT 84 191 13 

AIRSN 215 ~400 37 
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The new programs are smaller and more readable—

and also provide for type checking, provenance 

tracking, parallelism, and distributed execution. 

7 Conclusions 

We have designed a typed workflow notation and 

system that allows workflows to be expressed in terms 

of declarative procedures that operate on XML data 

types and then executed on diverse physical 

representations and on distributed computers. We show 

that this notation and system can be used to express 

large amounts of distributed computation easily.  

The productivity leverage of this approach is 

apparent: a small group of developers can define VDL 

interfaces to the utility packages used in a research 

domain and then create a library of dataset-iteration 

functions. This library encapsulates low-level details 

concerning how data is grouped, transported, 

catalogued, passed to applications, and collected as 

results. Other scientists can then use this library to 

construct workflows without needing to understand 

details of physical representation, and furthermore are 

protected by the XDTM type system from forming 

workflows that are not type compliant. In addition, the 

data management conventions of a research group can 

be encoded in XDTM mapping functions, thus making 

it easier to maintain order in dataset collections that 

may include tens of millions of files. 

We next plan to automate the parsing steps that 

were performed manually in our prototype, and to 

create a complete workflow development and execution 

environment for our XDTM-based VDL. We will also 

investigate support for services, automation of type 

coercions between differing physical representations, 

and recording of provenance for large data collections. 
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