
Accelerating Science Gateway Development
with Web 2.0 and Swift

Wenjun Wu
Computation Institute, University of

Chicago & Argonne National
Laboratory

Chicago, IL 60637, USA

wwj@ci.uchicago.edu

Thomas Uram
Mathematics and Computer Science

Division, Argonne National Laboratory
Argonne, IL 60439, USA
turam@mcs.anl.gov

Michael Wilde, Mark Hereld,
Michael E. Papka

Mathematics and Computer Science
Division, Argonne National Laboratory

Argonne, IL 60439, USA

wilde, herald,
papka@mcs.anl.gov

ABSTRACT
A Science Gateway is a computational web portal that includes a
community-developed set of tools, applications, and data
customized to enable scientists to run scientific simulations, data
analysis, and visualization through their web browsers. The major
problem of building a science gateway on a Grid environment
such as TeraGrid is how to deploy scientific applications rapidly
on computational resources and expose these applications as web
services to scientists. Although many web-service frameworks
have been designed and applied in building domain-specific
science gateways, most of these efforts only addressed the issue of
adding scientific applications as SOAP services into a service
container; they usually don’t provide solutions to support web
interface generation. Developers still need to spend a lot of time
learning web programming to implement a user-friendly and
interactive web interface to these services.

In this paper we propose a new application framework that can
greatly accelerate the development cycle of science gateway
systems. This framework enables science gateway developers to
import their domain-specific scientific workflow scripts and
generate Web 2.0 gadgets for running these application workflows
and visualizing the output from workflow executions without
writing any web related code. By assembling these application-
specific gadgets and some common gadgets predefined in the
framework for workflow management, developers can easily set
up a customized computational science gateway to meet
community requirements. We demonstrate the utility of the
framework with an example from computational biochemistry.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

General Terms
Design, Experimentation

Keywords
Web2.0, Workflow, Science Gateway, OpenSocial

1. INTRODUCTION
This paper proposes a new Web 2.0 based application framework
that provides a hosting environment for running computational

workflows and delivers user-defined workflows as both web
services and OpenSocial [6] gadgets. Through this application
framework, science gateway developers can focus on defining
computational workflows for domain-specific applications using
parallel scripting technology [7], and can use the software tools in
the framework to automatically generate gadgets for running the
workflows and visualizing the outputs from workflow executions.
By assembling these application-specific gadgets and some
common gadgets predefined in the framework for workflow
management, developers can easily set up a customized
computational workspace to meet community requirements.

A science gateway is a computational web portal that includes a
community-developed set of tools, applications, and data
customized to meet the needs of a targeted community. It can hide
the complexity of accessing heterogeneous Grid computing
resources from scientists and enable them to run scientific
simulations, data analysis and visualization through their web
browsers. It is also a collaborative cyber-environment on which
researchers working on the same or similar domains can easily
team up to perform computational thinking on challenging
scientific problems by sharing their computational software tools
and elevating experimental datasets to scientific knowledge and
innovative theories. Initiated in 2004, many scientific gateways
funded by the TeraGrid Science Gateways program [1] have been
developed to offer Software-as-a-Service (SaaS) to researchers
from science domains such as bioinformatics, climate, and high-
energy physics.

The gateway paradigm requires gateway developers to compile
and install scientific applications on a variety of HPC clusters
available from the resource providers in TeraGrid, to build service
middleware for the management of the applications, and to
develop web interfaces for delivering the applications to a user’s
web browser.

One major problem in the development of a gateway is how to
rapidly deploy scientific applications on computational resources
and expose these applications as web services to scientists.
Clearly, the whole process of application integration can be
greatly streamlined if a generalized application framework can
facilitate the development procedure. Although many web-service
frameworks [2][3] have been designed and applied in building
domain-specific science gateways, most of these efforts only
addressed the issue of adding scientific applications as SOAP
services into a service container. These frameworks also enable

workflow orchestration based on the deployed web services [4].
But they usually don’t provide solutions to support web interface
generation. Developers still need to spend a lot of time learning
web programming, especially JavaScript and AJAX technologies
to implement a user-friendly and interactive web interface to these
services

Another issue regarding application integration is how to host user
defined workflows in a science gateway. Scientific workflows or
computational workflows have become an effective programming
paradigm to compose complex computation modules for scientific
simulation and analysis of large-scale datasets on clusters or
heterogeneous computing environments. For instance, a data-
driven workflow language such as Swift [5] defines a high-level
abstraction and model for computational software developers to
exploit the concurrency and parallelism of their data-intensive
science applications. Given large-scale data inputs, a
computational workflow usually requires a lot of computing
resources and a very long time to run tasks. A workflow hosting
environment greatly facilitates developers to easily manage their
workflows, reliably run the workflows, profile the performance of
their workflows, and expose the workflows as services to their
user communities.

The rest of the paper is organized as follows. Section 2 presents
an overview of the Web 2.0 application framework. Section 3 and
Section 4 describe the design and implementation of the
application management service and the workflow execution
service of the framework, respectively. Section 5 discusses the
design of the Web 2.0 representation layer and shows a science
gateway example for protein 3D structure prediction based on our
framework. Security issues around the framework are examined in
Section 6. Related work is discussed in Section 7. Finally, we give
the conclusion in Section 8.

2. WEB 2.0-BASED SCIENTIFIC
APPLICATION FRAMEWORK
We selected OpenSocial as the basis for our Web 2.0-based
scientific application framework. OpenSocial [6], a social
networking framework initiated by Google, presents a Web 2.0
approach to the integration of web applications and the
construction of collaborative cyber environments. It standardizes
the practices of both gadget programming and online social
networking, enabling web developers to write social gadgets that
can run in any OpenSocial-compliant container. In OpenSocial,
web applications are regarded as gadgets, which define their own
HTML content and control logic in client-side JavaScript. Such a
self-containing gadget has less dependence on its container than a
portlet [8], which simplifies the deployment of the gadget.
OpenSocial also provides a social data API to access information
about people, their friends, and their data, within the context of an
OpenSocial container.

The other key building block in the framework is the workflow
system. Swift [7], a parallel scripting language for developing
data-intensive workflow applications is the only workflow
language supported in our framework. The major advantages of
supporting Swift in the framework include: (1) the Swift language
blends a C-like syntax with functional programming
characteristics, which is designed to expose opportunities for
parallel execution; (2) Using the Swift language, developers can
easily link their scripts into a data-driven computational

workflow; and (3) the Swift workflow engine is very lightweight
for integration into a science gateway.

Figure 1 shows the basic structure of this Web 2.0 based
application framework. Like most service-oriented architectures,
this is a three-layer system: the resource layer including
distributed computing resources and science data repository; the
service layer consisting of application management service
(AMS), workflow execution service (WES) and science data
service (SDS); and the top web representation layer based on
OpenSocial gadget technology.

The application management service enables developers to
describe the command-line syntax, the output dataset, the
dependence on installed software packages, and the run-time
requirements of their workflows. These metadata and Swift
workflow packages are kept in a science application registry.
Parsing the metadata of a Swift workflow, the AMS generates
gadgets for launching the workflow and visualizing its output. The
workflow execution service is built on top of the Swift workflow
engine, which can run Swift workflows on Grid environments
through Globus GRAM [9] and SSH, and also supports multiple
data access methods (e.g. local file system, sftp and GridFTP
[10]). The WES allows users to start, stop, and restart Swift
workflows that have been published in the science application
registry, and to monitor the progress of the workflow execution.
The science data service provides a unified RESTful interface to
support basic file operations and query and annotation of
heterogeneous data resources. Through the SDS, the WES entity
can make data queries to discover the real locations of input and
output data for running a workflow and pass the locations to a
workflow executor. A variety of data gadgets can also be
developed on the basis of the SDS for end users to find, access,
and annotate their data.

The following two sections present more discussion about the
design of the AMS and WES. Although there are some common
software patterns in providing science data services, the design of
the SDS is often deeply affected by the application requirement
and data ontology of a specific science domain. Therefore this
framework only assumes that the SDS should provide a unified

Figure 1. Architecture of the Web2.0 application framework

RESTful interface to other components, and leaves the detailed
design of the data model up to the implementation of specific
gateway projects.

3. SCIENTIFIC APPLICATION
MANAGEMENT
In this section we present an example of using this Web 2.0
workflow framework to define applications, create application
gadgets, and run workflows. This example comes from an
important computational problem in biochemistry: protein 3D
structure prediction. University of Chicago researchers have
developed the Open Protein Simulator (OOPS) [11] for predicting
tertiary (3D) protein structure. Their approach to this
computational problem involves running many instances of a
structure prediction simulation, each with different random initial
conditions. The simulation uses an “iterative fixing” algorithm
that performs multiple “rounds,” each involving many parallel
Monte Carlo simulated annealing models of molecular moves
with energy minimization. Figure 2 shows the main function
defined in the OOPS workflow script.

Figure 2 . OOPS protein simulation workflow script

In this protein simulation workflow script, the command line
would be executed as follows:

swift oops.swift –plist=plist –nsims=1 \
 –st=100 –tui=10 –coeff=0.1”

Such a command-line syntax can be clearly described in Mobyle
XML [12], whose schema can specify the type, name, and format
of each argument in a flexible way. Moreover, short Python or
Perl code snippets can be inserted into a Mobyle description to
capture the dependence among the arguments and generate the
appropriate argument format. Figure 3 displays a fragment of the
Mobyle XML description for OOPS simulation.

Figure 3. Mobyle XML description for OOPS simulation

workflow script
Parsing the Mobyle XML description, the application gadget
generator in the AMS can create an OpenSocial gadget that
consists of the gadget metadata, as well as HTML markups and
JavaScript codes by using predefined XSLT templates and
JavaScript templates. These templates transform the Mobyle XML
into an HTML snippet with predefined cascading style sheets to
produce JavaScript codes for security handling, parameter
marshalling, and invocation of the generic JSON-RPC [13]
service, which calls the WES to launch OOPS simulation runs.
Figure 4 shows a screenshot of the OOPS simulation gadget as

<parameter ismandatory="1" issimple="1" ismaininput="1">
 <name>plist</name>
 <prompt lang="en">input protein fasta file</prompt>
 <type>
 <datatype>
 <class>File</class>
 </datatype>
 </type>
 <format>
 <code proglang="python">
 ("","-plist="+str(value))[value is not None]
 </code>
 </format>
 <argpos>1</argpos>
 </parameter>

main()

{

string plistfile=@arg("plist",""); // input protein
fasta file

string indir=@arg("indir","oops.input");

string outdir=@arg("outdir","output");

string nsims=@arg("nsims","1"); // simulation num

string st=@arg("st","100"); // start temperature

string tui=@arg("tui","100"); // time update interval

string coeff=@arg("coeff","0.1");

string plist[] = readData(plistfile);

RAMAIn ramain[]

 <ext;exec="RAMAInProts.map.sh",i=indir,p=plistfile>;

RAMAOut ramaout[][]

<ext;exec="RandProtRadialMapper.py",

o=outdir,p=plistfile,

n=nsims,c=create>;

foreach sim in [0 : @toint(nsims) -1] {

 foreach prot,index in plist {

 ramaout[index][sim]

 =predictCf(prot,ramain[index],st,tui,coeff);

 VizOut outpng[] <ext; exec="pngmapper.py",

 o=metadir,

 p=@filename(ramaout[index][sim].pdb) >;

 outpng[0] = pngviz(ramaout[index][sim]);

 }

}

}

Figure 4 OOPS simulation gadget as generated from Mobyle XML by
the application management service

generated from the Mobyle XML.

The output from this protein simulation workflow includes
predicted protein 3D structures in the standardized PDB format
and the data analysis result for the evaluation of prediction
quality. These output files are visualized through a range of
visualization tools such as PyMol [14] for generating PNG images
of protein structures, and scatter plots of protein energy level
versus the root-mean-square distance of backbone atoms of the
predicted structure to the known structure. These analysis
computations are accomplished as a final step in the integrated
simulation script. Clearly, visualization of the outputs from
workflows is highly dependent on the requirement of domain-
specific applications. We sought to allow workflow developers to
explicitly describe their visualization methods and render the
visualization results in a gadget while minimizing the HTML and
Javascript code that must be written. To this end, we took a data-
driven approach in the framework, in which workflow developers
include analysis processing in their workflows and, finally,
specify the output data to be visualized. Figure 5 shows an XML
fragment describing the output of the OOPS workflow.

Figure 5 XML description for the output of OOPS simulation

workflow

The above XML description is very straightforward. It lists all the
output files to be displayed as visualization results and groups
files into a bundle if they are produced from the simulation runs
on the same input protein. In addition, for each science
application, developers can define an XSLT rule file to transform
the XML file into an HTML. These XSLT templates specify the
HTML objects for rendering various types of output files and
layout schemes based on the grouping of the data files. The
visualization page for the Figure 5 output XML is shown in
Figure 6.

In addition to software tools for describing the command-line
interface and visualization processing of a workflow, the AMS
also allows workflow developers to keep multiple versions of
their workflow scripts. During the development and testing of
workflows, developers may find it useful to create different
versions of Swift scripts for the same computing task. Each script
could have different input and output arguments. Thus we must
generate gadgets for these scripts if workflow developers want to

evaluate all the versions to find out the best solution to their
computational problems.

Figures 6 The Main Page of OOPS Science Gateway showing
the workflow history and visualization result

4. WORKFLOW EXECUTION SERVICE
The WES is implemented in two major components: one is the
service-facing module that provides JSON-RPC and AXIS-2 web
services, the other is the Swift engine daemon that actually
launches Swift workflow instances. Whenever a user sends a
workflow request through the service interface, the request is first
processed to generate a command-line for workflow launching,
and then recorded in a persistent database that is polled by the
Swift engine daemon. The daemon executes workflows by forking
Swift workflow executor processes that run Swift workflow stacks
with the command line carried by the requests. Because this
workflow executor has a built-in weighted scheduling mechanism
for the task execution, it can dynamically decide the best Grid
resources that are available to run the Swift workflow and can
resubmit any failed tasks. Based on the log files produced by the
executor during the execution of the workflows, the Swift daemon
monitors the dynamic progress of the workflow and updates its
status in the workflow database.

The WES relies on running environment configurations that are
kept in the application registry to kick off the execution of a
workflow application. Such a configuration typically defines a list
of all the executable programs, their installation locations, security
contexts and relevant environment variables and attributes.
Workflow developers must provide this configuration when they
publish a new Swift workflow application through the AMS
service. The other dependence of the WES is on the data access
mapping service from the SDS. Workflow invocation requests
only carry URL references to the input datasets for workflow
running. Thus, the WES has to ask the SDS for the physical

<?xml version="1.0" encoding="ISO-8859-1"?>

<output>

 <file label="Data Summary">summary.csv</file>

 <group name="T1af7-25-100">

 <file label="">

 T1af7-25-100_scatter.png

 </file>

 <file label="Best Structure">

 T1af7-25-100_best.pdb

 </file>

 <file label="Lowest Energy">

 T1af7-25-100_predicted.pdb

 </file>

 </group>

</output>

Figures 6 The

main page of

addresses of the data and appropriate data access methods, and
pass the information down to the Swift engine daemon.

Elastic service provision is one of the major design issues in the
workflow execution service. For the resource provision of running
computing workflows, the WES can integrate resource reservation
provided by third-party scheduling services developed by Grid
communities and the built-in resource provider (Coaster) in the
Swift workflow engine [15]. Swift Coaster implements a similar
provision mechanism to Condor Glide-In [16] to improve the
throughput of job submission and execution for many-tasks
workflows. Furthermore, besides the resource provision for
running remote workflow tasks, the WES also needs to handle
load balancing for running many workflow executor processes on
local hosting environments for science gateways. Driven by the
scale of the input dataset, a single workflow executor can be a
long running process that can consume a few Gigabytes memory
and 5%-10% CPU on a modern web server. Since the functional
components of the WES has been divided by the persistent
workflow storage, it is reasonable to implement a simple
clustering mechanism to run a lot of workflow executors on a
modest server farm to cope with the dynamic workload for a
science gateway. For systems with a very large user community
and higher workload, it is also feasible to run workflow executor
processes as computing tasks in a computational cluster.

Workflow and data provenance is another very important feature
for scientists and researchers when they are performing large-
scale simulation and analysis in an iterative manner. Sometimes
they want to run new workflows based on the output of finished
workflows and track the lineage of these workflows later to
explore the best parameter set among them. The WES tracks
provenance by annotating the workflow database record with the
lineage information when users select the output from completed
workflow runs as the input data to launch a new workflow. The
WES allows users to search a group of workflow runs that are
generated along a lineage history.

5. WEB 2.0 DELIVERY LAYER
All the service entities including AMS, WES and SDS deliver
their services as OpenSocial gadgets to users. Since an
OpenSocial gadget is a standalone client-side web application that
can be rendered on any OpenSocial compatible container, we
should decide whether to host an in-house container at the web
representation layer of our framework. The major benefit of
running an in-house container over a commercial one hosted by
social networking web sites is the ability to customize security
policy and gadget layout.

Generally, scientists and researchers are open to share their data
and workflow tools with the public. However there are scenarios
where data security becomes a very important concern if their
studied subjects have privacy protection issues. It is essential,
therefore, to set up a private OpenSocial container for rendering
scientific gadgets to alleviate such a privacy concern. It is also
easier to customize the layout of gadgets and choose the most
suitable version of the OpenSocial specification to be used in our
framework if we run our own OpenSocial container.

Currently, Shindig [17], an OpenSocial reference implementation
supported by the Apache community, is the foundation for the
development of this layer. It is worthwhile to note that Shindig is
not a full-fledged OpenSocial container because it has no services

such as gadget layout, gadget management, and security. We have
to build up these services on top of Shindig at the web layer of our
framework. Basically the web layer is just like an enhanced
gadget container with customized layout and management policy.

Customized layouts make the user interface look more like an
integrated web environment, as opposed to the column layout
style used in iGoogle. Figure 6 displays such a layout for the
OOPS Science Gateway project, which presents a workflow-
centered management GUI to OOPS users. In the layout, three
gadgets, including the workflow history gadget, the results view
gadget, and the OOPS simulation gadget (hidden in tab), are
integrated together to become a powerful workbench. Behind the
scenes, communication channels are set up among the gadgets and
container page to support the event-and-listener model in GUI
design.

The OpenSocial specification offers APIs for both publish-
subscribe messaging for gadget-to-gadget communication and
RPC communication between gadgets and their container page.
For example, in Figure 6, the OOPS simulation gadget publishes a
message after an invocation of the OOPS workflow is submitted.
The workflow history gadget that has subscribed to this message
topic will get notified and update its gadget content by placing a
new workflow item on the top of the list. At this time, if a user
clicks this item in the workflow history gadget, it sends a message
to notify the container page to switch to the View Results tab to
show the simulation output.

The issue of cross-domain communication in a web browser may
arise if gadgets and their container page are rendered from
different domains. In some implementations, for example, the
container web page runs on port 80, while the gadgets are
rendered on port 8080 because Shindig is running on port 8080 as
a Tomcat web application. Being loaded in an IFRAME of the
container page, a gadget has to follow the JavaScript sandboxing
and same-domain security policy, thereby prohibiting its
JavaScript code from accessing the container page unless the
IFRAME comes from the same domain. The OpenSocial gadget-
to-container RPC mechanism addresses this problem by trying
possible cross-domain communication APIs within different
browsers and presents a clean RPC interface to gadget developers.

Since each gadget is loaded within an IFRAME in the container
page, it has no knowledge of web sessions. The only way to allow
the gadget to get a session object is to pass a unique session ID to
the gadget when the gadget IFRAME is created and then the
gadget can call back to the container to query the attributes in the
session object using the ID. Each gadget IFRAME has a source
URL with an important parameter called security token. This is a
short-lived token that has encoded in it all the necessary
information about the site, gadget, and viewer. Once a gadget is
initialized, it parses the security token in the URL and reads the
session ID to contact the container page to fetch the current
session object.

6. SECURITY
Within a service framework, security is certainly a critical design
issue. There are a variety of security solutions to web-services and
Web 2.0 systems, including HTTPS/SSL based transport level
security, WS-Security and WS-Trust. These solutions can be
separately applied in securing JSON-RPC services and SOAP
services when we implement this application framework.

The issue of workflow execution sandbox arises if we allow end
users without any mutual trust to publish arbitrary workflows and
run OpenSocial gadgets to launch their workflows. To some
extent, the sandbox is needed both on the local resource for
running Swift workflow executors and on the remote Grid
resources where workflow computing tasks are submitted. Virtual
machines seem the ultimate solution to providing sandboxes for
isolating local workflow executors from different users. The
alternative approach is to put some file access restrictions for
running these executors. For instance, a workflow instance from a
user can only modify and remove data objects owned by this user.

It is also necessary to design some sort of security policy for
running remote computing tasks for workflows on community-
shared resources. Many science gateways follow the transitive
mode mentioned in the “AAA model to support science gateways
with community accounts” [18] to enforce access to remote
TeraGrid resources. In this model, the key notion is the so-called
TeraGrid community account, which is a shared TeraGrid account
for serving community users who don’t have a formal account in
the TeraGrid system. Through its community account, a science
gateway service can retrieve the temporary MyProxy [19]
credential from the MyProxy server of the TeraGrid, and use that
credential for job submission and data transfer. Providing a secured
sandbox for such a community account across Grid environments
is still an active research area and needs further investigation.

From the perspective of the application deployment in this
Web2.0 service framework, we provide a collaborative
mechanism between administrators and users to work together in
the procedure of application deployment to make sure that only
safe applications get deployed in a science gateway. When a user
completes a new workflow XML description through the AMS, he
can send a request to an administrator requesting installation of
the software packages needed by this workflow into the TeraGrid
resources. Following the software list of the new workflow, the
administrator can download the software packages and install and
test them on multiple TeraGrid clusters. After the workflow is
successfully deployed, the WES will be activated to make this
workflow available for end users.

7. RELATED WORK
Most application frameworks for building science gateways [2][3]
are often focused on wrapping scientific applications as web
services and delivering the services through SOAP. They also
allow workflow developers to utilize workflow composing
toolkits to define computational workflows based on the deployed
scientific services [4]. Some computational application
frameworks rely on Condor middleware [16] for job management
and resource scheduling.
The service layer of our framework is more focused on
lightweight JSON-RPC services that can provide fast
communication channels between front-end AJAX JavaScript
codes and backend workflow services. We don’t need Condor for
resource management because the Swift workflow engine as a
standalone package can provide reliable and highly efficient
resource management on TeraGrid resources.

TeraGrid Science gateways are using a variety of web
programming frameworks for their development, among which
the JSR 168/268 based portal framework [8][20] enables users to
create a customizable web environment from a collection of
application portlets. But a portlet is far less flexible and platform-

agonistic than a gadget because it includes both browser-side and
server-side components. By using the gadget-based solution, our
framework makes it possible for scientists to create their
computational web portal on their own social web pages.

8. CONCLUSION
In this paper, we described a new Web 2.0-based application
framework that simplifies the development of science gateways.
The framework allows developers to host their domain-specific
software toolkits and workflows and rapidly generate Web 2.0
service interfaces to their workflows. Thus, it provides researchers
a collaborative web environment to run data-intensive computing
applications efficiently on Grid resources.

Based on this framework, we have developed the new OOPS
science gateway for protein 3D structure prediction. A few OOPS
workflows and gadgets have been built and integrated into the
science gateway through this framework and have been made
available to users. The new science gateway enables researchers
to easily utilize petascale systems for exploring a wide range of
parameter values and comparing the outcome in order to gain
deeper insights into important aspects of the structure and
behavioral properties of large biomolecules.

From our experience with building a few science gateways based
on this framework, we believe that this web2.0 framework
captures a common pattern in the software architecture of science
gateways and can be applied to a variety of science domains such
as life science, social and behavior science, and scientific
visualization. We plan to extend the workflow execution service
to support running workflows on the emerging science cloud
resources. We will also investigate possible software toolkits to
enable the automation of the software development of the whole
science gateway based on our current framework.

9. ACKNOWLEDGMENTS
This work was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Dept. of
Energy, under Contract DE-AC02-06CH11357, and the National
Science Foundation by grant OCI-0504086.

10. REFERENCES
[1] Wilkins-Diehr, N.,Gannon, D., Klimeck, G., Oster, S.,

Pamidighantam, S., 2008. TeraGrid Science Gateways and
Their Impact on Science, IEEE Computer 41(11):32-41, Nov
2008.

[2] Kandaswamy, G., Fang, L., Huang, Y., Shirasuna, S., Marru,
S., and Gannon,D. 2006. Building Web Services for
Scientific Grid Applications. IBM Journal of Research and
Development 50(2-3), 2006.

[3] Krishnan, L. and Stearn, B., et al. 2006. Opal: Simple Web
Services Wrappers for Scientific Applications. IEEE
International Conference on Web Services (ICWS 2006), Sep
18-22, Chicago.

[4] Oinn,T., Addis,M. et al. 2004. Taverna: A tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics Journal, 20(17), 3045-3054.

[5] Zhao, Y., Hategan M., Clifford, B., Foster, I., vonLaszewski,
G., Raicu, I., Stef-Praun, T. and Wilde, M. 2007. Swift: Fast,
Reliable, Loosely Coupled Parallel Computation. In Proc.
IEEE International Workshop on Scientific Workflows 2007,
pp. 199-206.

[6] OpenSocial Specification, http://www.opensocial.org/

[7] Wilde, M., Foster, I., Iskra, K., Beckman, P., Zhang, Z.,
Espinosa, A., Hategan, M., Clifford, B., Raicu, I. 2009.
Parallel Scripting for Applications at the Petascale and
Beyond, IEEE Computer 42(11):50-61, Nov. 2009.

[8] JSR-168 portlet specification
http://jcp.org/aboutJava/communityprocess/final/jsr168/.

[9] Feller, M., Foster, I., and Martin, S. 2007. "GT4 GRAM: A
Functionality and Performance Study", TeraGrid Conference
2007.

[10] Allcock, W.(editor), GridFTP: Protocol Extensions to FTP
for the Grid. GFD-20, April 2003.
http://www.ggf.org/documents/GFD.20.pdf.

[11] Hocky, G., Wilde, M., DeBartolo, J., Hategan, M., Foster, I.,
Sosnick, T. R., Freed, K. 2009. Towards Petascale ab initio
Protein Folding through Parallel Scripting, preprint,
ANL/MCS-P1645-0609, Argonne National Laboratory.

[12] Mobyle, http://bioweb2.pasteur.fr/projects/mobyle.
[13] JSON-RPC, http://jabsorb.org.
[14] PyMol , www.pymol.org/.

[15] Swift Coaster,
http://www.ci.uchicago.edu/swift/guides/userguide.php.

[16] Thain, D., Tannenbaum, T., and Livny, M. 2003. "Condor
and the Grid", in Fran Berman, Anthony J.G. Hey, Geoffrey
Fox, editors, Grid Computing: Making The Global
Infrastructure a Reality, John Wiley, 2003. ISBN: 0-470-
85319-0.

[17] Shindig http://shindig.apache.org.
[18] Welch, V., Barlow, J., Basney, J. and Marcusiu, D. 2006.

AAA model to support science gateways with community
accounts. Concurrency and Computation: Practice and
Experience 19(6) 893-904.

[19] Basney, J., Humphrey, M. and Welch, V. 2005. The
MyProxy Online Credential Repository. Software: Practice
and Experience, Volume 35, Issue 9, July 2005, pages 801-
816.

[20] Nicklous, M., and Hepper, S. 2008. JSR 286: Portlet
specification 2.0. http://www.jcp.org/en/jsr/detail?id=286.

