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ABSTRACT 
Science gateways have dramatically simplified the work required 
by science communities to run their codes on TeraGrid resources.  
Gateway development typically spans the duration of a particular 
grant, with the first production runs occurring some months after 
the award and concluding near the end of the project.  Scientists 
use gateways as a means to interface with large resources. Our 
gateway infrastructure facilitates this by hiding away the various 
details of the underlying resources and presents an intuitive way 
to interact with the resource. In this paper, we present our work on 
GPSI, a general-purpose science gateway infrastructure that can 
be easily customized to meet the needs of an application. This 
reduces the time to deployment and improves scientific 
productivity. Our contribution in this paper is two-fold: to 
elaborate our vision for a user-driven gateway infrastructure that 
includes components required by multiple science domains, thus 
aiding the speedy development of gateways, and presenting our 
experience in moving from our initial portal implementations to 
the current effort based on Python [15] and Django [16]. 

Categories and Subject Descriptors 
H.3.5 [Online Information Services]: Web-based services  

General Terms 
Design, Experimentation, 
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1. INTRODUCTION 
Despite the many reusable technologies available for developing 
science gateways, portal development is still typically a one-off 
integrative development exercise, which is costly and time-
consuming for new research collaborations. In this paper, we 
analyze technology choices made in our past portal development 
efforts to identify common patterns and pitfalls, and describe our 
effort to build a framework for generic portals for science 

infrastructure (GPSI). 

Science gateways have been proven as a tremendously valuable 
tool to bridge the gap between computational scientists and their 
available compute resources [1]. Based on our work with several 
gateways, we have identified components and patterns that are 
common across gateways in several science domains. Common 
components are used to manage data, metadata, compute 
resources, credentials, job submission and monitoring, and browse 
simulation outputs. The primary distinguishing factor among 
gateways is the specific applications that are used to process the 
data and view the results. GPSI exploits this scenario by 
combining usable, familiar common components with support for 
users to define applications and output representations. 

As compute infrastructures and data sizes grow larger, we need 
more sophisticated tools for managing data, running and 
monitoring simulations, tracking data and execution provenance, 
analyzing and visualizing results, and collaborating with 
colleagues. Furthermore, these tools should be intuitive and use 
common interaction patterns, so scientists can begin running 
simulations in their gateways as close to the start of their projects 
as possible. We have sought to make GPSI a tool that will help 
scientists without getting in their way, so they don’t despair at 
having to learn yet another system to do their work. 

2. BACKGROUND AND MOTIVATION 
The GPSI effort is derived from our earlier work on several 
portals, described here briefly. 
With the TeraGrid Visualization Portal (TGViz) portal [2], users 
could visualize their data using a ParaView server running on 
TeraGrid compute resources, viewing the rendered images with a 
ParaView client on their desktop. This required tracking job 
execution so that when it became active and the ParaView server 
had started, the portal could inform the user of the host and port 
against which to run their local ParaView client. The portal was 
developed on uPortal [19] and then GridSphere [20], using 
GRAM to submit jobs to the TeraGrid. This effort successfully 
enabled remote visualization using ParaView, but clarified the 
need for remote file browsing and facilities for introducing 
arbitrary remote applications. 
In the Social Informatics Data Grid project [3], we developed a 
data warehouse and computational science portal for social and 
behavioral scientists to upload their large data stores and scale 
their multi-modal analyses to TeraGrid compute resources. As is 
typical, individual scientists had large caches of data and 
proprietary algorithms that they wanted to share with the other 
members of their team. Also, privacy concerns were significant as 
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the data was largely derived from human studies. We worked 
closely with the scientists to integrate their applications into the 
portal and design their output representations. SIDGrid was built 
using PHP/Drupal and Python for the web frontend, and used 
Swift [7] for job execution. The SIDGrid portal demonstrated 
useful practices in data management (such as tagging and faceted 
search), web services (via SOAP), and desktop integration. 
SIDGrid could have benefited from the use of a web framework 
and object relational management (ORM) system, and a more 
tightly integrated collection of components. 
The Open Life Science Gateway [4] used Java and OGCE to 
expose bioinformatics applications in a portal interface. In 
OLSGW, we developed support for defining application execution 
descriptions and integrating them into the portal with a generated 
web interface for execution. 
The Open Social scientific application framework [5] was a Java-
based effort to build a portal using OpenSocial gadgets as web 
components and Swift as the execution engine. In this work we 
established the importance of letting users define applications in 
the portal, as this allows them to improve their simulations 
without the aid of a gateway developer and analyze their results 
more quickly. This gateway also used OpenSocial gadgets, 
allowing users to arrange them to construct their own working 
environments in the web browser, and to use portions of the portal 
in third party sites like iGoogle. In applying this portal to protein 
folding simulations being run by the OOPS group at the 
University of Chicago, we developed support for users to build 
custom representations of their simulation outputs, another key 
user functionality. 
From these efforts, we identified several functional components 
that appeared repeatedly in the various gateways. Users obviously 
required control over how their data is imported, how it is 
identified, and how they search and organize it. While portals are 
typically built around a static collection of resources, users often 
have multiple compute resources available to them and should be 
able to control where their jobs are run. The user also will clearly 
need to control how those jobs are run, including which 
application is used and the parameters and files used to run it, and 
various parameters germane to the job submission itself. Output 
processing is a hybrid of the general and the particular: the 
handling of many outputs can be anticipated, such as displaying 
an image on the output webpage, while others are more complex 
and domain-specific and must be controlled by the scientists (for 
example, how a molecular model might be displayed). 
The infrastructure we envision is for computational scientists what 
WordPress is for bloggers. In GPSI, we have encoded much of 
what is required by a science gateway and support click-through 
interfaces for scientists to adapt it to their needs. Following simple 
interfaces to integrate their applications with the portal, scientists 
can describe their compute resources, run jobs, and view basic 
representations of their results. They can easily customize these 
representations according to the idioms of their particular science 
domain. Further, as with any gateway, GPSI can be customized by 
developers to meet the more complex requirements of science 
domains. 

TECHNOLOGY CHOICES 
2.1 Principles 
The following principles guided our choices in designing GPSI. 
They are based on lessons learned in our earlier work on several 

portals in diverse science domains, and the findings of a recent 
study of TeraGrid Gateway developers [6].   
Enforce sound software development practices 
Choosing technologies that enforce good development practices 
will produce better quality code, which aids initial development as 
well as maintenance and customization efforts. 
Adopt proven, well-supported dependencies 
By choosing stable dependencies, the gateway will be stable and 
will receive bug fixes, enhancements, and security patches applied 
in future updates to the dependencies. 
Emphasize intuitive interfaces 
The gateway will be deployed to a diverse set of users with 
varying technical proficiency. Striving to make the user interface 
intuitive will help users be more self-sufficient and productive, 
reducing the support burden on the gateway developers. 
Leverage development by the broader community 
Projects with an active community are likely to produce reusable 
components that can be adopted off-the-shelf for future gateway 
enhancements. 
Large developer community 
Good developers are hard to find, and gateway projects suffer 
when they lose developers midstream. Choosing technologies that 
have a wide developer base increases the availability of 
professional developers. 

2.2 Technologies 
A comparison of the technologies used in earlier portal efforts and 
in GPSI is given in Table 1. In GPSI, we have chosen the 
following technologies. 
Python/Django 
GPSI benefits from the adoption of Python/Django in several 
respects, which we compare with earlier technology choices here. 
• Python, being an interpreted language, enables developers to 

modify the live code to add minor functionality or fix errors, 
without requiring a compile/deploy step. Language 
preference is always subjective; we chose Python because its 
scripting nature allows us to modify code quickly, and due to 
its rich standard library and enforcement of good coding 
practices. 

• Django employs and enforces a model-view-controller 
(MVC) methodology, a common development pattern for 
separating presentation from application logic. This approach 
encourages good development practices and produces more 
maintainable code. MVC web frameworks also exist in Java. 
Our choice here was largely constrained by our choice of 
Python; nonetheless, Django is a mature framework that has 
since been emulated by other web frameworks, notably the 
Java-based Play. 

• Django templates provide a presentation layer consistent 
across webpages, making the user interface usable and 
attractive.  We have used templates in other systems, and 
defined styles in CSS to present unified styles, but the 
Django template system is well documented and easy to use, 
and will be familiar to other developers that come to the 
system.  

• Django is well documented, making the entire gateway easier 
to maintain than our original Java portal, which was coded 
from the ground up. As with the templating system, the 



existence of comprehensive documentation makes the GPSI 
application easier for gateway developers to maintain. 

• Many standard and third party modules are available for 
Django. A few examples include support for OpenID, 
Facebook Connect, and user ratings. Many web frameworks 
and rich internet application toolkits are now available and 
achieve a similar level of pluggability. 

• Django is the most widely used Python web framework, with 
a very well established community of developers. Pylons and 
Pyjamas are alternatives, but Django is the most common 
and we judge the most likely to continue into the future. 

Swift 
For describing and executing workflows, we have chosen the 
Swift language and execution engine. Swift provides both a 
parallel scripting language for developing data-intensive 
workflow applications, and an execution engine for dispatching 
jobs to local and remote compute resources. Three advantages of 
supporting Swift in the framework include: (1) the Swift language 
blends a familiar C-like syntax with functional programming 
characteristics, which is designed to expose opportunities for 
parallel execution; (2) the Swift language allows researchers to 
easily link their scripts into a data-driven computational 
workflow; and (3) the Swift workflow engine is very lightweight 
for integration into a science gateway. 
JQuery 
JQuery [17] is a widely used JavaScript library that fulfills our 
principles in many respects, primary among them being the 
usability that it brings to the application. Further, JQuery is used 
in many stable web applications and is supported by a large 
community with many active developers. 
XML/XSL 
GPSI can identify the outputs of a simulation, but in cases where 
the researchers want to represent a constrained subset of the 
outputs, they required a mechanism for describing it. We have 
chosen to use a simple XML format that would be trivial for their 
simulation codes to produce, but would be sufficiently descriptive 
for us to process. In addition, many researchers are already 
familiar with basic XML syntax, so this choice is rather natural 
for them.  
For transforming the XML output description to HTML, we have 
chosen to use XSL [12]. XSL is admittedly less familiar to 
scientists, but is the de facto standard for transforming XML 
documents. Also, GPSI includes a default XSL stylesheet which 
will be used in most cases, so only in special cases will scientists  
be exposed to XSL syntax. 

3. PORTAL DESIGN 
In this section, we describe the functional aspects of GPSI, and 
give examples of each. These examples are drawn on data and 
jobs from TeraGrid resources and from PADS [9], a compute 
cluster at the University of Chicago. 

3.1 Data Management 
Effective data management is essential to the ability of 
simulations to produce meaningful results, and will become more 
important with the growth of compute resources, and simulations, 
and resulting datasets. Users begin with large datasets already and 
must migrate them to compute resources before beginning their 
simulations. Simulations are routinely producing terabytes to 
petabytes of data, and this data must be managed in ways that 
maximize its utility to the researchers.  

Users introduce their datasets to GPSI in the same manner they 
would any other site, through simple uploads. In the case of large 
imports, the user can provide a compressed archive either by 
upload or by URL, and the portal will decompress the archive and 
add the files to the user’s account. Users can share their portal 
files with other users, granting or revoking access at their whim. 
We have found that the ability to flexibly share files is essential 
amid the flux typical in research teams. 
The file view in Figure 1 is a virtual table populated by calls to the 
Django file services by DataTables [18], an AJAX table control 
used throughout the GPSI site. The performance of this control is 
key to the ability of GPSI to quickly deliver views of large server-
side data; paging or searching through thousands of files is done 
with very low latency. Files can be arbitrarily tagged, with support 
from the django-tagging module. Files can be searched by 
filename, date, and tags. 
Individual files are presented in GPSI with associated history, 
metadata, tags, and a link to the process by which they were 
produced, as shown in Figure 2. The file can be previewed in the 
portal or downloaded to the user’s computer. 
 

3.2 Compute Resource Management  
While TeraGrid gateways typically allow users to run their jobs 
on TeraGrid resources, we recognized in GPSI that users often 
have multiple compute resources available to them, including 
campus resources or other large, distributed grids. Users should be 
the arbiters of where their jobs run, selecting from their unique 
pool of resources.  
GPSI users can manage their available compute resources, adding 
any resources for which they have a valid credential. Each 
resource definition includes the hostname and type of the job 
submission endpoint, and the hostname and type of the data 
transfer service. These are used to create Swift [7] configuration 
files used to drive data staging and job submission. 
As part of the definition of a resource, a credential type is 
specified. At the time of job submission, the user is required to 
provide a suitable credential. Currently supported credential types 
include secure shell (ssh) for the local PADS cluster, and 
MyProxy [10] credentials for TeraGrid resources.  

Table 1 Comparison of technologies in our earlier portals and in 
GPSI 

 Earlier Portals GPSI portal 
Language Java, JSP, Python, 

PHP 
Python 

Web 
Framework 

None Django 

ORM Hibernate Django 

Database MySQL multiple* 

JS library JQuery JQuery 

Application 
generation 

PISE, Mobyle, 
StringTemplates 

Django 

Execution VDS, Swift Swift 

Output 
generation 

XSL XSL 

* Django includes support for many databases 

 



3.3 Application Management 
While many aspects of gateways are common—they all must 
manage data and execute jobs--applications are the key 
differentiator between science gateways. Scientists understand 
their computational tools best, as they have typically run them on 
their local resources many times.  Users should be able to describe 
their application, including the parameters and default values used 
to run it, and have the portal produce a web interface for 
specifying those parameter values and running the job. Taking this 
approach, a GPSI installation transitions from a generic portal to a 
domain- or scientist-specific portal. 
Applications are introduced to GPSI either as simple command 
line or as Swift scripts. This flexibility allows scientists to begin 
running their command line applications in the portal 
immediately, on multiple compute resources. GPSI wraps 
command lines with Swift code internally for execution and, 
because of this, Swift’s support for concurrency is also exposed in 
the portal. For example, given a command line and a set of 
execution parameters, the user can specify a range of values for 
one or more of the input parameters, and Swift will submit a job 
for each of the unique parameter combinations, blocking as 
necessary on data dependencies. This support takes users quickly 
from execution of a single instance of their code to large ensemble 
runs. 
Alternatively, users can define an application by uploading a 
Swift script and any required supporting files. This scenario is 
applicable for users with existing Swift scripts, and those 
requiring more fine-grained control over their workflow 
definitions. In this case, GPSI parses the uploaded Swift script to 
determine the execution parameters and their default values, and 
stores these in the database with the application definition.  
In some cases, the user will continue to maintain their code in 
their existing external repository, and would like to update the 
portal instance so the new code is executed for future runs. GPSI 

includes support for users to define applications based on external 
repositories, in which case the application definition includes the 
relevant repository location details; taking Git [14] as an example, 
the additional information would consist of the Git repository 
URL and a username and password. GPSI also provides source 
code repositories for users who wish to maintain their code in a 
new repository hosted by the portal.  
A user can share applications with other users or make them 
public. Available applications can be tagged and searched by tag 
to facilitate lookups. 

3.4 Job Management 
Job management is the core functional component of science 
gateways, handling the specification, execution, and monitoring of 
compute jobs. To run a job, the gateway collects information 
about how the job should be run (e.g. compute resource, number 
of nodes, queue, duration) and which application to run, including 
parameter values and input files. Users may have any number of 
jobs running on various sites at a given time, and a long history of 
past jobs. These data also become part of the data management 
scenario, as researchers need to track past jobs and their inputs 
and results, and do so quickly. 
When submitting a job, GPSI renders the input form for the 
selected application for the user to specify applications parameters 
and execution parameters. The application parameters are derived 
from the application definition, and can be either a string or a file. 
If the input is a string argument, the user may specify a single 
value. If the input is a file argument, the user can select the file 
using a remote file browser or begin typing a filename to use the 
built-in autocomplete functionality, which queries the user’s 
portal-resident files.  
After selecting a compute resource and specifying a credential and 
accompanying job submission parameters, the user can submit the 
job. Upon submission, the job is recorded in the database with 
related input parameters and files. 

 
Figure 1 A table view of a user’s files. The AJAX table control 
fetches only the visible files, or the results of file searches, to 
provide a quick view into large data collections. 
 
 
 

 
Figure 2 View of an output file in the GPSI gateway. Files can 
be tagged by users, previewed in the web page, and downloaded. 
 
 
 



Jobs are executed asynchronously by the GPSI execution daemon. 
The GPSI daemon queries the database periodically for jobs to 
run. It gathers the execution parameters and input files and uses 
the Swift execution engine to submit jobs to TeraGrid and local 
compute resources. The daemon executes each job from a separate 
thread and waits on its completion, reporting progress back to the 
database, including whether and how many jobs have been 
submitted, are active, or have completed. Using the site 
definitions configured by the user, Swift stages files to the 
selected compute resource, executes the job, and stages the files 
back to the portal. If the user cancels the job while in process, 
Swift terminates jobs running on the compute resources and exits, 
and the job is labeled as canceled.   
As with other data on the site, jobs are represented in a dynamic 
table built on AJAX queries (Figure 3). Jobs can be searched by 
date, application name, execution parameters, or tags.  The job list 
can also be sorted by any of the columns. 

3.5 Output Processing 
The results of computational science jobs take many forms. Many 
of these are common and admit to general handling: images, 
movies, or columnar text output; these can all be satisfactorily 
rendered using standard representations. Some of these basic 
forms, and certainly any of the more complex, domain-specific 
outputs, will be better represented with some guidance from the 
scientist. We seek to provide standard mechanisms for many of 
the standard data formats, and to allow users to customize output 
representations for all data formats. 
Upon job completion, the portal processes the outputs to record 
provenance relationships and produce an HTML representation. 
By default, all outputs produced by the job are recorded as outputs 
and appear in the generated HTML representation. Alternatively, 
applications can describe the output files that should be tracked by 
listing them in a simple XML file; an example is given in Figure 
4. 
 

Figure 4 An example of an XML file to describe the outputs of a 
job. This is an optional file used to select a subset of the outputs 
produced by the job. 
 

The portal produces the final HTML representation by 
transforming the output XML file with an XSL [12] style sheet. 
The portal uses the default style sheet, unless an alternate style 
sheet has been provided by the application. An example of HTML 
output generated using the default style sheet is given in Figure 5.  
In this case, the output was produced by an analysis of MODIS 
data to colorize land mass images based on population density. 
These images appear because the default XSL stylesheet includes 
handling for images. 

3.6 Visualization  
Visualization is a key component of scientific analysis but has 
traditionally been delivered to web browsers in the form of 
individual images or low-resolution animations. Modern web 
browsers, with support for HTML5 video, are changing that 
landscape by providing support for the latest standards in 
streaming video, such as the h.264 and WebM codecs. 
Figure 6 shows a results page from a VL3 volume rendering job 
run from within the portal. The job was run on the local PADS 
cluster, with VL3 producing the rendering, and accompanying 
software scraping and streaming the JPEG images to the browser. 
Mouse and keyboard interactions are captured from the web 
browser and transmitted to the running visualization on the 

 
Figure 5 View of a MODIS job in the GPSI gateway. Pertinent 
job details are presented, as is the generated output view, 
including images produced. 
 

 
Figure 3 View of jobs in the GPSI gateway. Jobs are searchable 
by application name, parameter values, and tags. 
 
 
 

<?xml version="1.0" encoding="ISO-8859-1"?>  
<output> 
<file label="Data Summary">summary.csv</file>   
<group name="T1af7-25-100"> 
<file label=""> T1af7-25-100_scatter.png</file> 
<file label="Best Structure">T1af7-25-100_best.pdb</file> 
</group> 
</output> 



compute resource to manipulate the dataset. We are also 
experimenting with streaming the visualization to web browsers 
using the WebM codec.  

 

4. RELATED WORK 
HUBzero [8] is a mature and widely used platform for building 
science gateways. It is built atop the open-source Joomla CMS, 
written in PHP. The HUBzero project and GPSI share many 
common functional goals, including abstracting scientific 
applications, and integrating execution, analysis, and 
visualization. Applications are integrated using Rapptor 
definitions (analogous in some sense to the Swift application 
descriptions used in GPSI), from which desktop applications are 
built using Tcl and transmitted to the web browser using VNC 
[11]. In GPSI, we have tried to exploit modern web browser 
functionality, relying on Django to produce interfaces for 
specifying application inputs, and HTML5 to stream content to 
users. HUBzero’s support for data analysis is, nonetheless, 
exemplary. 

Open Grid Computing Environments (OGCE) is a comprehensive 
toolkit for building science gateways, and includes a Java-based 
portal foundation, grid compute tools, SOAP web services, a 
JavaScript Grid library, and OpenSocial gadgets support. These 
components have arisen out of very successful gateway projects 
(e.g., LEAD). Many of these components are good models for the 
underlying abstractions of GPSI. The key difference is that OGCE 
targets gateway developers, whereas GPSI is targeting science 
users. 

SimpleGrid [13] is a toolkit for developing gateways for the 
geosciences community. Its goal is to simplify the process of 

developing gateways and provide common infrastructure that can 
mature as a gateway platform. Like OGCE, SimpleGrid targets 
gateway developers, so applies at a different level. 

5. DISCUSSION 
In this paper, we have described our work on GPSI, a generic 
portal infrastructure for science gateways. GPSI is the result of 
evaluations of technology choices, user engagement, and lessons 
learned in previous science gateway development efforts. From 
these we found that many science gateways could be built on a 
common foundation, avoiding the usual overhead of bootstrapping 
a new gateway. GPSI provides a foundation that includes data 
management, application management, job management and 
monitoring, and output processing facilities. These operate in 
default modes, with options for user customization. 
Our work so far has concentrated on building the GPSI 
infrastructure and applying it in test scenarios from earlier science 
gateways. Three areas in which we plan to expand GPSI are: 
• analysis using a combination of client-side graphing and 

server-side statistical analysis tools; 
• rendering datasets on remote visualization resources and 

streaming to the web browser; 
• web service access to GPSI services for data browsing, 

upload and download, and job submission. 
In the future, we intend to apply GPSI more intensively in 
collaboration with science partners to identify shortcomings and 
additional requirements. 
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