
A solution looking for lots of problems:
 Generic Portals for Science Infrastructure

Thomas D. Uram, Michael E. Papka, Mark Hereld, Michael Wilde

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA

{turam,hereld,papka,wilde}@mcs.anl.gov

ABSTRACT
Science gateways have dramatically simplified the work required
by science communities to run their codes on TeraGrid resources.
Gateway development typically spans the duration of a particular
grant, with the first production runs occurring some months after
the award and concluding near the end of the project. Scientists
use gateways as a means to interface with large resources. Our
gateway infrastructure facilitates this by hiding away the various
details of the underlying resources and presents an intuitive way
to interact with the resource. In this paper, we present our work on
GPSI, a general-purpose science gateway infrastructure that can
be easily customized to meet the needs of an application. This
reduces the time to deployment and improves scientific
productivity. Our contribution in this paper is two-fold: to
elaborate our vision for a user-driven gateway infrastructure that
includes components required by multiple science domains, thus
aiding the speedy development of gateways, and presenting our
experience in moving from our initial portal implementations to
the current effort based on Python [15] and Django [16].

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

General Terms
Design, Experimentation,

Keywords
Science Gateway, Django, Python, Swift, Web2.0, Workflow

1. INTRODUCTION
Despite the many reusable technologies available for developing
science gateways, portal development is still typically a one-off
integrative development exercise, which is costly and time-
consuming for new research collaborations. In this paper, we
analyze technology choices made in our past portal development
efforts to identify common patterns and pitfalls, and describe our
effort to build a framework for generic portals for science

infrastructure (GPSI).

Science gateways have been proven as a tremendously valuable
tool to bridge the gap between computational scientists and their
available compute resources [1]. Based on our work with several
gateways, we have identified components and patterns that are
common across gateways in several science domains. Common
components are used to manage data, metadata, compute
resources, credentials, job submission and monitoring, and browse
simulation outputs. The primary distinguishing factor among
gateways is the specific applications that are used to process the
data and view the results. GPSI exploits this scenario by
combining usable, familiar common components with support for
users to define applications and output representations.

As compute infrastructures and data sizes grow larger, we need
more sophisticated tools for managing data, running and
monitoring simulations, tracking data and execution provenance,
analyzing and visualizing results, and collaborating with
colleagues. Furthermore, these tools should be intuitive and use
common interaction patterns, so scientists can begin running
simulations in their gateways as close to the start of their projects
as possible. We have sought to make GPSI a tool that will help
scientists without getting in their way, so they don’t despair at
having to learn yet another system to do their work.

2. BACKGROUND AND MOTIVATION
The GPSI effort is derived from our earlier work on several
portals, described here briefly.
With the TeraGrid Visualization Portal (TGViz) portal [2], users
could visualize their data using a ParaView server running on
TeraGrid compute resources, viewing the rendered images with a
ParaView client on their desktop. This required tracking job
execution so that when it became active and the ParaView server
had started, the portal could inform the user of the host and port
against which to run their local ParaView client. The portal was
developed on uPortal [19] and then GridSphere [20], using
GRAM to submit jobs to the TeraGrid. This effort successfully
enabled remote visualization using ParaView, but clarified the
need for remote file browsing and facilities for introducing
arbitrary remote applications.
In the Social Informatics Data Grid project [3], we developed a
data warehouse and computational science portal for social and
behavioral scientists to upload their large data stores and scale
their multi-modal analyses to TeraGrid compute resources. As is
typical, individual scientists had large caches of data and
proprietary algorithms that they wanted to share with the other
members of their team. Also, privacy concerns were significant as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TeraGrid ’11, July 18-21, Salt Lake City, Utah, USA.
Copyright 2011 ACM 1-58113-000-0/00/0010…$10.00.

the data was largely derived from human studies. We worked
closely with the scientists to integrate their applications into the
portal and design their output representations. SIDGrid was built
using PHP/Drupal and Python for the web frontend, and used
Swift [7] for job execution. The SIDGrid portal demonstrated
useful practices in data management (such as tagging and faceted
search), web services (via SOAP), and desktop integration.
SIDGrid could have benefited from the use of a web framework
and object relational management (ORM) system, and a more
tightly integrated collection of components.
The Open Life Science Gateway [4] used Java and OGCE to
expose bioinformatics applications in a portal interface. In
OLSGW, we developed support for defining application execution
descriptions and integrating them into the portal with a generated
web interface for execution.
The Open Social scientific application framework [5] was a Java-
based effort to build a portal using OpenSocial gadgets as web
components and Swift as the execution engine. In this work we
established the importance of letting users define applications in
the portal, as this allows them to improve their simulations
without the aid of a gateway developer and analyze their results
more quickly. This gateway also used OpenSocial gadgets,
allowing users to arrange them to construct their own working
environments in the web browser, and to use portions of the portal
in third party sites like iGoogle. In applying this portal to protein
folding simulations being run by the OOPS group at the
University of Chicago, we developed support for users to build
custom representations of their simulation outputs, another key
user functionality.
From these efforts, we identified several functional components
that appeared repeatedly in the various gateways. Users obviously
required control over how their data is imported, how it is
identified, and how they search and organize it. While portals are
typically built around a static collection of resources, users often
have multiple compute resources available to them and should be
able to control where their jobs are run. The user also will clearly
need to control how those jobs are run, including which
application is used and the parameters and files used to run it, and
various parameters germane to the job submission itself. Output
processing is a hybrid of the general and the particular: the
handling of many outputs can be anticipated, such as displaying
an image on the output webpage, while others are more complex
and domain-specific and must be controlled by the scientists (for
example, how a molecular model might be displayed).
The infrastructure we envision is for computational scientists what
WordPress is for bloggers. In GPSI, we have encoded much of
what is required by a science gateway and support click-through
interfaces for scientists to adapt it to their needs. Following simple
interfaces to integrate their applications with the portal, scientists
can describe their compute resources, run jobs, and view basic
representations of their results. They can easily customize these
representations according to the idioms of their particular science
domain. Further, as with any gateway, GPSI can be customized by
developers to meet the more complex requirements of science
domains.

TECHNOLOGY CHOICES
2.1 Principles
The following principles guided our choices in designing GPSI.
They are based on lessons learned in our earlier work on several

portals in diverse science domains, and the findings of a recent
study of TeraGrid Gateway developers [6].
Enforce sound software development practices
Choosing technologies that enforce good development practices
will produce better quality code, which aids initial development as
well as maintenance and customization efforts.
Adopt proven, well-supported dependencies
By choosing stable dependencies, the gateway will be stable and
will receive bug fixes, enhancements, and security patches applied
in future updates to the dependencies.
Emphasize intuitive interfaces
The gateway will be deployed to a diverse set of users with
varying technical proficiency. Striving to make the user interface
intuitive will help users be more self-sufficient and productive,
reducing the support burden on the gateway developers.
Leverage development by the broader community
Projects with an active community are likely to produce reusable
components that can be adopted off-the-shelf for future gateway
enhancements.
Large developer community
Good developers are hard to find, and gateway projects suffer
when they lose developers midstream. Choosing technologies that
have a wide developer base increases the availability of
professional developers.

2.2 Technologies
A comparison of the technologies used in earlier portal efforts and
in GPSI is given in Table 1. In GPSI, we have chosen the
following technologies.
Python/Django
GPSI benefits from the adoption of Python/Django in several
respects, which we compare with earlier technology choices here.
• Python, being an interpreted language, enables developers to

modify the live code to add minor functionality or fix errors,
without requiring a compile/deploy step. Language
preference is always subjective; we chose Python because its
scripting nature allows us to modify code quickly, and due to
its rich standard library and enforcement of good coding
practices.

• Django employs and enforces a model-view-controller
(MVC) methodology, a common development pattern for
separating presentation from application logic. This approach
encourages good development practices and produces more
maintainable code. MVC web frameworks also exist in Java.
Our choice here was largely constrained by our choice of
Python; nonetheless, Django is a mature framework that has
since been emulated by other web frameworks, notably the
Java-based Play.

• Django templates provide a presentation layer consistent
across webpages, making the user interface usable and
attractive. We have used templates in other systems, and
defined styles in CSS to present unified styles, but the
Django template system is well documented and easy to use,
and will be familiar to other developers that come to the
system.

• Django is well documented, making the entire gateway easier
to maintain than our original Java portal, which was coded
from the ground up. As with the templating system, the

existence of comprehensive documentation makes the GPSI
application easier for gateway developers to maintain.

• Many standard and third party modules are available for
Django. A few examples include support for OpenID,
Facebook Connect, and user ratings. Many web frameworks
and rich internet application toolkits are now available and
achieve a similar level of pluggability.

• Django is the most widely used Python web framework, with
a very well established community of developers. Pylons and
Pyjamas are alternatives, but Django is the most common
and we judge the most likely to continue into the future.

Swift
For describing and executing workflows, we have chosen the
Swift language and execution engine. Swift provides both a
parallel scripting language for developing data-intensive
workflow applications, and an execution engine for dispatching
jobs to local and remote compute resources. Three advantages of
supporting Swift in the framework include: (1) the Swift language
blends a familiar C-like syntax with functional programming
characteristics, which is designed to expose opportunities for
parallel execution; (2) the Swift language allows researchers to
easily link their scripts into a data-driven computational
workflow; and (3) the Swift workflow engine is very lightweight
for integration into a science gateway.
JQuery
JQuery [17] is a widely used JavaScript library that fulfills our
principles in many respects, primary among them being the
usability that it brings to the application. Further, JQuery is used
in many stable web applications and is supported by a large
community with many active developers.
XML/XSL
GPSI can identify the outputs of a simulation, but in cases where
the researchers want to represent a constrained subset of the
outputs, they required a mechanism for describing it. We have
chosen to use a simple XML format that would be trivial for their
simulation codes to produce, but would be sufficiently descriptive
for us to process. In addition, many researchers are already
familiar with basic XML syntax, so this choice is rather natural
for them.
For transforming the XML output description to HTML, we have
chosen to use XSL [12]. XSL is admittedly less familiar to
scientists, but is the de facto standard for transforming XML
documents. Also, GPSI includes a default XSL stylesheet which
will be used in most cases, so only in special cases will scientists
be exposed to XSL syntax.

3. PORTAL DESIGN
In this section, we describe the functional aspects of GPSI, and
give examples of each. These examples are drawn on data and
jobs from TeraGrid resources and from PADS [9], a compute
cluster at the University of Chicago.

3.1 Data Management
Effective data management is essential to the ability of
simulations to produce meaningful results, and will become more
important with the growth of compute resources, and simulations,
and resulting datasets. Users begin with large datasets already and
must migrate them to compute resources before beginning their
simulations. Simulations are routinely producing terabytes to
petabytes of data, and this data must be managed in ways that
maximize its utility to the researchers.

Users introduce their datasets to GPSI in the same manner they
would any other site, through simple uploads. In the case of large
imports, the user can provide a compressed archive either by
upload or by URL, and the portal will decompress the archive and
add the files to the user’s account. Users can share their portal
files with other users, granting or revoking access at their whim.
We have found that the ability to flexibly share files is essential
amid the flux typical in research teams.
The file view in Figure 1 is a virtual table populated by calls to the
Django file services by DataTables [18], an AJAX table control
used throughout the GPSI site. The performance of this control is
key to the ability of GPSI to quickly deliver views of large server-
side data; paging or searching through thousands of files is done
with very low latency. Files can be arbitrarily tagged, with support
from the django-tagging module. Files can be searched by
filename, date, and tags.
Individual files are presented in GPSI with associated history,
metadata, tags, and a link to the process by which they were
produced, as shown in Figure 2. The file can be previewed in the
portal or downloaded to the user’s computer.

3.2 Compute Resource Management
While TeraGrid gateways typically allow users to run their jobs
on TeraGrid resources, we recognized in GPSI that users often
have multiple compute resources available to them, including
campus resources or other large, distributed grids. Users should be
the arbiters of where their jobs run, selecting from their unique
pool of resources.
GPSI users can manage their available compute resources, adding
any resources for which they have a valid credential. Each
resource definition includes the hostname and type of the job
submission endpoint, and the hostname and type of the data
transfer service. These are used to create Swift [7] configuration
files used to drive data staging and job submission.
As part of the definition of a resource, a credential type is
specified. At the time of job submission, the user is required to
provide a suitable credential. Currently supported credential types
include secure shell (ssh) for the local PADS cluster, and
MyProxy [10] credentials for TeraGrid resources.

Table 1 Comparison of technologies in our earlier portals and in
GPSI

 Earlier Portals GPSI portal
Language Java, JSP, Python,

PHP
Python

Web
Framework

None Django

ORM Hibernate Django

Database MySQL multiple*

JS library JQuery JQuery

Application
generation

PISE, Mobyle,
StringTemplates

Django

Execution VDS, Swift Swift

Output
generation

XSL XSL

* Django includes support for many databases

3.3 Application Management
While many aspects of gateways are common—they all must
manage data and execute jobs--applications are the key
differentiator between science gateways. Scientists understand
their computational tools best, as they have typically run them on
their local resources many times. Users should be able to describe
their application, including the parameters and default values used
to run it, and have the portal produce a web interface for
specifying those parameter values and running the job. Taking this
approach, a GPSI installation transitions from a generic portal to a
domain- or scientist-specific portal.
Applications are introduced to GPSI either as simple command
line or as Swift scripts. This flexibility allows scientists to begin
running their command line applications in the portal
immediately, on multiple compute resources. GPSI wraps
command lines with Swift code internally for execution and,
because of this, Swift’s support for concurrency is also exposed in
the portal. For example, given a command line and a set of
execution parameters, the user can specify a range of values for
one or more of the input parameters, and Swift will submit a job
for each of the unique parameter combinations, blocking as
necessary on data dependencies. This support takes users quickly
from execution of a single instance of their code to large ensemble
runs.
Alternatively, users can define an application by uploading a
Swift script and any required supporting files. This scenario is
applicable for users with existing Swift scripts, and those
requiring more fine-grained control over their workflow
definitions. In this case, GPSI parses the uploaded Swift script to
determine the execution parameters and their default values, and
stores these in the database with the application definition.
In some cases, the user will continue to maintain their code in
their existing external repository, and would like to update the
portal instance so the new code is executed for future runs. GPSI

includes support for users to define applications based on external
repositories, in which case the application definition includes the
relevant repository location details; taking Git [14] as an example,
the additional information would consist of the Git repository
URL and a username and password. GPSI also provides source
code repositories for users who wish to maintain their code in a
new repository hosted by the portal.
A user can share applications with other users or make them
public. Available applications can be tagged and searched by tag
to facilitate lookups.

3.4 Job Management
Job management is the core functional component of science
gateways, handling the specification, execution, and monitoring of
compute jobs. To run a job, the gateway collects information
about how the job should be run (e.g. compute resource, number
of nodes, queue, duration) and which application to run, including
parameter values and input files. Users may have any number of
jobs running on various sites at a given time, and a long history of
past jobs. These data also become part of the data management
scenario, as researchers need to track past jobs and their inputs
and results, and do so quickly.
When submitting a job, GPSI renders the input form for the
selected application for the user to specify applications parameters
and execution parameters. The application parameters are derived
from the application definition, and can be either a string or a file.
If the input is a string argument, the user may specify a single
value. If the input is a file argument, the user can select the file
using a remote file browser or begin typing a filename to use the
built-in autocomplete functionality, which queries the user’s
portal-resident files.
After selecting a compute resource and specifying a credential and
accompanying job submission parameters, the user can submit the
job. Upon submission, the job is recorded in the database with
related input parameters and files.

Figure 1 A table view of a user’s files. The AJAX table control
fetches only the visible files, or the results of file searches, to
provide a quick view into large data collections.

Figure 2 View of an output file in the GPSI gateway. Files can
be tagged by users, previewed in the web page, and downloaded.

Jobs are executed asynchronously by the GPSI execution daemon.
The GPSI daemon queries the database periodically for jobs to
run. It gathers the execution parameters and input files and uses
the Swift execution engine to submit jobs to TeraGrid and local
compute resources. The daemon executes each job from a separate
thread and waits on its completion, reporting progress back to the
database, including whether and how many jobs have been
submitted, are active, or have completed. Using the site
definitions configured by the user, Swift stages files to the
selected compute resource, executes the job, and stages the files
back to the portal. If the user cancels the job while in process,
Swift terminates jobs running on the compute resources and exits,
and the job is labeled as canceled.
As with other data on the site, jobs are represented in a dynamic
table built on AJAX queries (Figure 3). Jobs can be searched by
date, application name, execution parameters, or tags. The job list
can also be sorted by any of the columns.

3.5 Output Processing
The results of computational science jobs take many forms. Many
of these are common and admit to general handling: images,
movies, or columnar text output; these can all be satisfactorily
rendered using standard representations. Some of these basic
forms, and certainly any of the more complex, domain-specific
outputs, will be better represented with some guidance from the
scientist. We seek to provide standard mechanisms for many of
the standard data formats, and to allow users to customize output
representations for all data formats.
Upon job completion, the portal processes the outputs to record
provenance relationships and produce an HTML representation.
By default, all outputs produced by the job are recorded as outputs
and appear in the generated HTML representation. Alternatively,
applications can describe the output files that should be tracked by
listing them in a simple XML file; an example is given in Figure
4.

Figure 4 An example of an XML file to describe the outputs of a
job. This is an optional file used to select a subset of the outputs
produced by the job.

The portal produces the final HTML representation by
transforming the output XML file with an XSL [12] style sheet.
The portal uses the default style sheet, unless an alternate style
sheet has been provided by the application. An example of HTML
output generated using the default style sheet is given in Figure 5.
In this case, the output was produced by an analysis of MODIS
data to colorize land mass images based on population density.
These images appear because the default XSL stylesheet includes
handling for images.

3.6 Visualization
Visualization is a key component of scientific analysis but has
traditionally been delivered to web browsers in the form of
individual images or low-resolution animations. Modern web
browsers, with support for HTML5 video, are changing that
landscape by providing support for the latest standards in
streaming video, such as the h.264 and WebM codecs.
Figure 6 shows a results page from a VL3 volume rendering job
run from within the portal. The job was run on the local PADS
cluster, with VL3 producing the rendering, and accompanying
software scraping and streaming the JPEG images to the browser.
Mouse and keyboard interactions are captured from the web
browser and transmitted to the running visualization on the

Figure 5 View of a MODIS job in the GPSI gateway. Pertinent
job details are presented, as is the generated output view,
including images produced.

Figure 3 View of jobs in the GPSI gateway. Jobs are searchable
by application name, parameter values, and tags.

<?xml version="1.0" encoding="ISO-8859-1"?>
<output>
<file label="Data Summary">summary.csv</file>
<group name="T1af7-25-100">
<file label=""> T1af7-25-100_scatter.png</file>
<file label="Best Structure">T1af7-25-100_best.pdb</file>
</group>
</output>

compute resource to manipulate the dataset. We are also
experimenting with streaming the visualization to web browsers
using the WebM codec.

4. RELATED WORK
HUBzero [8] is a mature and widely used platform for building
science gateways. It is built atop the open-source Joomla CMS,
written in PHP. The HUBzero project and GPSI share many
common functional goals, including abstracting scientific
applications, and integrating execution, analysis, and
visualization. Applications are integrated using Rapptor
definitions (analogous in some sense to the Swift application
descriptions used in GPSI), from which desktop applications are
built using Tcl and transmitted to the web browser using VNC
[11]. In GPSI, we have tried to exploit modern web browser
functionality, relying on Django to produce interfaces for
specifying application inputs, and HTML5 to stream content to
users. HUBzero’s support for data analysis is, nonetheless,
exemplary.

Open Grid Computing Environments (OGCE) is a comprehensive
toolkit for building science gateways, and includes a Java-based
portal foundation, grid compute tools, SOAP web services, a
JavaScript Grid library, and OpenSocial gadgets support. These
components have arisen out of very successful gateway projects
(e.g., LEAD). Many of these components are good models for the
underlying abstractions of GPSI. The key difference is that OGCE
targets gateway developers, whereas GPSI is targeting science
users.

SimpleGrid [13] is a toolkit for developing gateways for the
geosciences community. Its goal is to simplify the process of

developing gateways and provide common infrastructure that can
mature as a gateway platform. Like OGCE, SimpleGrid targets
gateway developers, so applies at a different level.

5. DISCUSSION
In this paper, we have described our work on GPSI, a generic
portal infrastructure for science gateways. GPSI is the result of
evaluations of technology choices, user engagement, and lessons
learned in previous science gateway development efforts. From
these we found that many science gateways could be built on a
common foundation, avoiding the usual overhead of bootstrapping
a new gateway. GPSI provides a foundation that includes data
management, application management, job management and
monitoring, and output processing facilities. These operate in
default modes, with options for user customization.
Our work so far has concentrated on building the GPSI
infrastructure and applying it in test scenarios from earlier science
gateways. Three areas in which we plan to expand GPSI are:
• analysis using a combination of client-side graphing and

server-side statistical analysis tools;
• rendering datasets on remote visualization resources and

streaming to the web browser;
• web service access to GPSI services for data browsing,

upload and download, and job submission.
In the future, we intend to apply GPSI more intensively in
collaboration with science partners to identify shortcomings and
additional requirements.

6. ACKNOWLEDGMENTS
This work was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Dept. of
Energy, under Contract DE-AC02-06CH11357, and the National
Science Foundation by grant OCI-0504086.

7. REFERENCES
[1] Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S.,

Pamidighantam, S. 2008, "TeraGrid Science Gateways and
Their Impact on Science," Computer , vol.41, no.11, pp.32-
41, Nov. 2008.

[2] Dahan, M., Insley, J. A., Papka, M. E., Uram, T., and
Gaither, K. P., 2007. “Enabling Science through the
TeraGrid Visualization Gateway” TeraGrid ’07 Conference,
Madison, WI, June 14 - 18, 2007.

[3] Bertenthal, B., Grossman, R, Hanley, D., Hereld, M, Kenny,
S., Levow, G., Papka, M., Porges, S., Rajavenkateshwaran,
K., Stevens, R., Uram, T., and Wu, W. 2007. Social
Informatics Data Grid, E-Social Science 2007 Conference,
October 7-9, 2007, Ann Arbor, Michigan

[4] Wu, W., Papka, M.E., and Stevens, R. 2008 , "Toward an
OpenSocial Life Science Gateway," Grid Computing
Environments Workshop, 2008. GCE '08 , vol., no., pp.1-6,
12-16 Nov. 2008

[5] Wu, W., Uram, T., Wilde, M., Hereld, M., and Papka. M.E.,
2010. Accelerating science gateway development with Web
2.0 and Swift. In Proceedings of the 2010 TeraGrid
Conference (TG '10). ACM, New York, NY, USA, Article
23, 7 pages.

[6] Wilkins-Diehr, N., and Lawrence, K.A. 2010, "Opening
science gateways to future success: The challenges of

Figure 6 View of a VL3 job in the GPSI gateway. JPEG Images
are streamed from the compute resource to the web browser,
where the user can interact with the running volume rendering
process.

gateway sustainability," Gateway Computing Environments
Workshop (GCE), 2010 , vol., no., pp.1-10, 14-14 Nov. 2010

[7] Wilde, M., Foster, I., Iskra, K., Beckman, P., Zhang, Z.,
Espinosa, A., Hategan, M., Clifford, B., Raicu, I. 2009.
Parallel Scripting for Applications at the Petascale and
Beyond, IEEE Computer 42(11):50-61, Nov. 2009.

[8] McLennan, M., and Kennell, R. 2010, "HUBzero: A
Platform for Dissemination and Collaboration in
Computational Science and Engineering," Computing in
Science & Engineering , vol.12, no.2, pp.48-53, March-April
2010

[9] PADS, http://pads.ci.uchicago.edu
[10] Basney, J., Humphrey, M., and Welch, V., 2005. The

MyProxy online credential repository: Research
Articles. Softw. Pract. Exper. 35, 9 (July 2005), 801-816.

[11] Richardson, T.; Stafford-Fraser, Q.; Wood, K.R.; Hopper, A.,
"Virtual network computing," Internet Computing, IEEE ,
vol.2, no.1, pp.33-38, Jan/Feb 1998

[12] XSL transformations (XSLT) version 1.0
[13] Wang, S., Liu, Y., Wilkins-Diehr, N., and Martin, S. 2009,

SimpleGrid toolkit: Enabling geosciences gateways to
cyberinfrastructure, Computers & Geosciences, Volume 35,
Issue 12, December 2009, Pages 2283-2294, ISSN 0098-
3004, DOI: 10.1016/j.cageo.2009.05.002.

[14] Git, git-scm.com
[15] Python, www.python.org
[16] Django, www.djangoproject.com
[17] JQuery, www.jquery.org
[18] DataTables, www.datatables.net
[19] uPortal
[20] GridSphere

