⇦ ⇨ - previous / next font in set
, . - decrease / increase font size
DEL - remove font from current set Home - restore font set to initial

Papers

Highlights - Technology

Highlights - Applications

Swift Language and Runtime Technology

Justin M. Wozniak, Hemant Sharma, Timothy G. Armstrong, Michael Wilde, Jonathan D. Almer, Ian T. Foster Big data staging with MPI-IO for interactive X-ray science Proc. IEEE/ACM Symposium on Big Data Computing 2014. [pdf]
James C. Phillips, John E. Stone, Kirby L. Vandivort, Timothy G. Armstrong, Justin M. Wozniak, Michael Wilde, Klaus Schulten Petascale Tcl with NAMD, VMD, and Swift/T Proc. Workshop for High Performance Technical Computing in Dynamic Languages at SC, 2014. 2014. [pdf]
Justin M. Wozniak, Michael Wilde, Ian T. Foster Language features for scalable distributed-memory dataflow computing Proc Data-flow Execution Models for Extreme-scale Computing at PACT 2014. [pdf]
Timothy G. Armstrong, Justin M. Wozniak, Michael Wilde, Ian T. Foster Compiler techniques for massively scalable implicit task parallelism Proc. SC 2014. [pdf]
Scott J. Krieder, Justin M. Wozniak, Timothy Armstrong, Michael Wilde, Daniel S. Katz, Benjamin Grimmer, Ian T. Foster, Ioan Raicu Design and evaluation of the GeMTC framework for GPU-enabled many-task computing Proc. HPDC 2014. [pdf]
Ketan Maheshwari, Justin M. Wozniak, Hao Yang, Daniel S. Katz, Matei Ripeanu, Victor Zavala, Michael Wilde Evaluating storage systems for scientific data in the cloud Proc. ScienceCloud (Best Paper Awardee) 2014. [pdf]
Justin M. Wozniak, Timothy G. Armstrong, Daniel S. Katz, Michael Wilde, Ian T. Foster Toward computational experiment management via multi-language applications Proc. ASCR Workshop on Software Productivity for Extreme-Scale Science 2014. [pdf]
Michael Wilde, Justin M. Wozniak, Timothy Armstrong, Daniel S. Katz, Ian T. Foster Productive composition of extreme-scale applications using implicitly parallel dataflow Proc. ASCR Workshop on Software Productivity for Extreme-Scale Science 2014. [pdf]
Ketan Maheshwari, David Kelly, Scott J. Krieder, Justin M. Wozniak, Daniel S. Katz, Zhi-Gang Mei, Mainak Mookherjee Reusability in science: From initial user engagement to dissemination of results Proc. Workshop on Sustainable Software for Science: Practice and Experiences at SC 2013. [pdf]
Ketan Maheshwari, Alex Rodriguez, David Kelly, Ravi Madduri, Justin M. Wozniak, Michael Wilde, Ian T. Foster Extending the Galaxy portal with parallel and distributed execution capability Proc. DataCloud 2013. [pdf]
Ketan Maheshwari, Alex Rodriguez, David Kelly, Ravi Madduri, Justin M. Wozniak, Michael Wilde, Ian T. Foster Enabling multi-task computation on Galaxy-based gateways using Swift Proc. Science Gateway Institute Workshop 2013. [pdf]
Justin M. Wozniak, Timothy G. Armstrong, Ketan Maheshwari, Ewing L. Lusk, Daniel S. Katz, Michael Wilde, Ian T. Foster Turbine: A distributed-memory dataflow engine for high performance many-task applications. Fundamenta Informaticae 128(3) 2013. [pdf]
Justin M. Wozniak, Tom Peterka, Timothy G. Armstrong, James Dinan, Ewing Lusk, Michael Wilde, Ian T. Foster Dataflow coordination of data-parallel tasks via MPI 3.0 Proc. EuroMPI 2013. [pdf]
Justin M. Wozniak, Michael Wilde, and Daniel S. Katz JETS: Language and system support for many-parallel-task workflows J. Grid Computing 11(3), 2013. 2013. [pdf]
Justin M. Wozniak, Timothy G. Armstrong, Michael Wilde, Daniel Katz, Ewing Lusk, Ian T. Foster Swift/T: Large-scale application composition via distributed-memory data flow processing Proc CCGrid 2013. [pdf]
Ketan Maheshwari, Kenneth Birman, Justin M. Wozniak, Devin Van Zandt Evaluating cloud computing techniques for smart power grid design using parallel scripting Proc CCGrid 2013. [pdf]
Justin M. Wozniak, Anthony Chan, Timothy G. Armstrong, Michael Wilde, Ewing Lusk, Ian T. Foster A model for tracing and debugging large-scale task-parallel programs with MPE Proc. Workshop on Leveraging Abstractions and Semantics in High-performance Computing at PPoPP 2013. [pdf]
Justin M. Wozniak, Timothy G. Armstrong, Michael Wilde, Ketan Maheshwari, Daniel S. Katz, Matei Ripeanu, Ewing L. Lusk, and Ian T. Foster Turbine: A distributed-memory dataflow engine for extreme-scale many-task applications Proc. Workshop on Scalable Workflow Enactment Engines and Technologies at SIGMOD 2012. [pdf]
Timothy G. Armstrong, Justin M. Wozniak, Michael Wilde, Ketan Maheshwari, Daniel S. Katz, Matei Ripeanu, Ewing L. Lusk, and Ian T. Foster ExM: High level dataflow programming for extreme-scale systems Proc. HotPar (poster series) 2012. [pdf]
Michael Wilde, Mihael Hategan, Justin M. Wozniak, Ben Clifford, Daniel S. Katz, Ian Foster Swift: A language for distributed parallel scripting Parallel Computing 2011. [pdf]
Mihael Hategan, Justin Wozniak, Ketan Maheshwari Coasters: uniform resource provisioning and access for clouds and grids 4th IEEE/ACM International Conference on Utility and Cloud Computing 2011. [pdf]
Michael Wilde, Ian Foster, Kamil Iskra, Pete Beckman, Zhao Zhang, Allan Espinosa, Mihael Hategan, Ben Clifford, Ioan Raicu Parallel Scripting for Applications at the Petascale and Beyond Computer, Vol. 42, No. 11 2009. [pdf]
Zhao Y., Hategan, M., Clifford, B., Foster, I., vonLaszewski, G., Raicu, I., Stef-Praun, T. and Wilde, M Swift: Fast, Reliable, Loosely Coupled Parallel Computation IEEE International Workshop on Scientific Workflows 2007. [pdf]

Swift Applications

Agarwal, K., Chase, J., Schuchardt, K., Scheibe, T., Palmer, B., Elsethagen, T. Design and Implementation of ‘Many Parallel Task’ Hybrid Subsurface Model 4th Workshop on Many-Task Computing on Grids and Supercomputers 2011. [pdf]
Adhikari, A. Peng, J., Wilde, M., Xu, J., Freed, K., Sosnick, T. Modeling large regions in proteins: Applications to loops, termini, and folding Protein Science 2011. [pdf]
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., Spies, J., Estabrook, R., Kenny, S., Bates, T., et al. OpenMx: An Open Source Extended Structural Equation Modeling Framework Psychometrika - Vol. 76, No.2, 306-317 April 2011 [pdf]
Woitaszek, M., Dennis, J., Sines, T. Parallel High-resolution Climate Data Analysis using Swift. 4th Workshop on Many-Task Computing on Grids and Supercomputers 2011. [pdf]
Uram, T., Papka, M., Hereld, M., Wilde, M. A solution looking for lots of problems: Generic Portals for Science Infrastructure Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery 2011. [pdf]
Wu, W., Uram, T., Wilde, M., Hereld, M., Papka, M. Accelerating Science Gateway Development with Web 2.0 and Swift TG 10 - Proceedings of the 2010 TeraGrid Conference 2010. [pdf]
Joe DeBartolo, Glen Hocky, Michael Wilde, Jinbo Xu, Karl F. Freed, and Tobin R. Sosnick Protein Structure Prediction Enhanced with Evolutionary Diversity: SPEED Protein Science Journal Jan 2010.
Andriy Fedorov, Benjamin Clifford, Simon K. Warfield, Ron Kikinis, Nikos Chrisochoides Non-Rigid Registration for Image-Guided Neurosurgery on the TeraGrid: A Case Study College of William and Mary Technical Report 2009. [pdf]
Stef-Praun, T., Clifford, B., Foster, I., Hasson, U., Hategan, M., Small, S., Wilde, M and Zhao,Y. Accelerating Medical Research using the Swift Workflow System Health Grid 2007. [pdf]
Stef-Praun, T., Madeira, G., Foster, I., and Townsend, R. Accelerating solution of a moral hazard problem with Swift e-Social Science 2007. [pdf]

Virtual Data Language Applications

Nefedova, V., Jacob, R., Foster, I., Liu, Y., Liu, Z., Deelman, E., Mehta, G. and Vahi, K., Automating Climate Science: Large Ensemble Simulations on the TeraGrid with the GriPhyN Virtual Data System. 2nd IEEE International Conference on eScience and Grid Computing, 2006. [pdf]
Horn, J.V., Dobson, J., Woodward, J., Wilde, M., Zhao, Y., Voeckler, J. and Foster, I. Grid-Based Computing and the Future of Neuroscience Computation. Methods in Mind, MIT Press, 2006.
Sulakhe, D., Rodriguez, A., Wilde, M., Foster, I. and Maltsev, N., Using Multiple Grid Resources for Bioinformatics Applications in GADU. IEEE/ACM International Symposium on Cluster Computing and Grid, 2006. [pdf]
Sulakhe, D., Rodriguez, A., D'Souza, M., Wilde, M., Nefedova, V., Foster, I. and Maltsev, N. GNARE: An Environment for Grid-Based High-Throughput Genome Analysis. Journal of Clinical Monitoring and Computing. 2005. [pdf]
Bardeen, M., Gilbert, E., Jordan, T., Nepywoda, P., Quigg, E., Wilde, M. and Zhao, Y. The QuarkNet/Grid Collaborative Learning e-Lab. Future Generation Computer Systems, 22 (6), 700-708. 2005. [pdf]
Arbree, A., Avery, P., Bourilkov, D., Cavanaugh, R., Rodriguez, J., Graham, G., Wilde, M. and Zhao, Y., Virtual Data in CMS Analysis. Computing in High Energy and Nuclear Physics, 2003. [pdf]
Arbree, A., Avery, P., Bourilkov, D., Cavanaugh, R., Katageri, S., Graham, G., Rodriguez, J., Voeckler, J. and Wilde, M., Virtual Data in CMS Production. Computing in High Energy and Nuclear Physics, 2003. [pdf]
Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent, S. and Foster, I., Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey. SC2002, Baltimore, MD, 2002. [pdf]
Zhao, Y. Virtual Galaxy Clusters: An Application of the GriPhyN Virtual Data Toolkit to Sloan Digital Sky Survey Data. MS thesis, University of Chicago, GriPhyN-2002-06, 2002.

Research Leading up to Swift

Zhao, Y., Wilde, M. and Foster, I. Virtual Data Language: A Typed Workflow Notation for Diversely Structured Scientific Data. Taylor, I.J., Deelman, E., Gannon, D.B. and Shields, M. eds. Workflows for eScience, Springer, 2007. 258-278.
Zhao, Y., Wilde, M. and Foster, I., Applying the Virtual Data Provenance Model. International Provenance and Annotation Workshop, Chicago, Illinois, 2006. [pdf]
Vöckler, J.-S., Mehta, G., Zhao, Y., Deelman, E. and Wilde, M., Kickstarting Remote Applications. 2nd International Workshop on Grid Computing Environments, 2006. [pdf]
Zhao, Y., Dobson, J., Foster, I., Moreau, L. and Wilde, M. A Notation and System for Expressing and Executing Cleanly Typed Workflows on Messy Scientific Data. SIGMOD Record 34 (3) 37-43 2005. [pdf]
Moreau, L., Zhao, Y., Foster, I., Voeckler, J. and Wilde, M., XDTM: XML Data Type and Mapping for Specifying Datasets. European Grid Conference, 2005. [pdf]
Zhao, Y., Wilde, M., Foster, I., Voeckler, J., Jordan, T., Quigg, E. and Dobson, J., Grid Middleware Services for Virtual Data Discovery, Composition, and Integration. 2nd International Workshop on Middleware for Grid Computing, 2004. [pdf]
Foster, I., Voeckler, J., Wilde, M. and Zhao, Y., The Virtual Data Grid: A New Model and Architecture for Data-Intensive Collaboration. Conference on Innovative Data Systems Research, 2003. [pdf]
Foster, I., Voeckler, J., Wilde, M. and Zhao, Y., Chimera: A Virtual Data System for Representing, Querying, and Automating Data Derivation. 14th Intl. Conf. on Scientific and Statistical Database Management, Edinburgh, Scotland, 2002. [pdf]
Vöckler, J.-S., Wilde, M. and Foster, I. The GriPhyN Virtual Data System. Technical Report GriPhyN-2002-02, 2002.
Zhao, Y., Wilde, M., Foster, I., Voeckler, J., Dobson, J., Gilbert, E., Jordan, T. and Quigg, E. Virtual Data Grid Middleware Services for Data-intensive Science. Concurrency and Computation: Practice and Experience, 18 (6), 595-608. 2000. [pdf]

Related Research

Armstrong, T. Integrating Task Parallelism into the Python Programming Language University of Chicago, Department of Computer Science May 2011 [pdf]
Moreau, L. and others, The First Provenance Challenge, Concurrency and Computation: Practice and Experience. 2008. [pdf]
Raicu, I., Zhao Y., Dumitrescu, C., Foster, I. and Wilde, M Falkon: a Fast and Light-weight tasK executiON framework Supercomputing Conference 2007. [pdf]
von Laszewski, G., Hategan, M. and Kodeboyina, D. Java CoG Kit Workflow. Taylor, I.J., Deelman, E., Gannon, D.B. and Shields, M. eds. Workflows for Science, 2007. 340-356. [pdf]
Meyer, L., Scheftner, D., Voeckler, J., Mattoso, M., Wilde, M. and Foster, I., An Opportunistic Algorithm for Scheduling Workflows on Grids. VECPAR'06, Rio De Janiero, 2006. [pdf]
Malewicz, G., Foster, I., Rosenberg, A. and Wilde, M., A Tool for Prioritizing DAGMan Jobs and Its Evaluation. IEEE International Symposium on High Performance Distributed Computing, 2006. [pdf]